Abstract

Heterogeneity is a significant feature of the reservoirs after polymer flooding, resulting in challenges for further enhanced oil recovery (EOR) in heterogeneous reservoirs. In order to further improve oil recovery in the reservoirs after polymer flooding, a novel EOR system (ASP-PPG composite system) was developed using preformed particle gel (PPG) and alkali-surfactant-polymer system (ASP system). We designed an oil saturation monitoring device and a large-scale 3D heterogeneous physical model to evaluate the performance of the system. The performance of the system and the ASP system were tested. Based on the testing results, the fluid migration patterns and enhanced oil recovery mechanisms of the ASP-PPG system in an actual heterogeneous reservoir were investigated using the oil saturation monitoring device and the 3D physical model. Experimental results indicate that the ASP-PPG system has a higher viscosity and better profile control ability than the ASP system. Additionally, the interfacial tension can be maintained at a low level, around 10−3 mN/m. Flooding experiments using the three-dimensional heterogeneous physical model demonstrated the excellent elastic deformation ability of PPG, which can dynamically block the large pores that formed after the polymer flooding and effectively improve the heterogeneity of reservoirs. After injecting the ASP-PPG system, the recovery factor of the model increased by 15.8%. Specifically, the sweep coefficient of high, medium, and low permeability layers increased by 4.36%, 19.6%, and 37.55%, respectively. Moreover, the oil displacement efficiency increased by 7.4%, 14.4%, and 17.9%, respectively. These results highlight the synergistic effect of combining PPG and ASP systems, significantly enhancing heterogeneous reservoir recovery after polymer flooding.

References

1.
Martins
,
F.
,
Felgueiras
,
C.
,
Smitkova
,
M.
, and
Caetano
,
N.
,
2019
, “
Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries
,”
Energies
,
12
(
6
), p.
964
.
2.
Zhukovskiy
,
Y. L.
,
Batueva
,
D. E.
,
Buldysko
,
A. D.
,
Gil
,
B.
, and
Starshaia
,
V. V.
,
2021
, “
Fossil Energy in the Framework of Sustainable Development: Analysis of Prospects and Development of Forecast Scenarios
,”
Energies
,
14
(
17
), p.
5268
.
3.
Pan
,
X. Z.
,
Wang
,
L. M.
,
Dai
,
J. Q.
,
Zhang
,
Q.
,
Peng
,
T. D.
, and
Chen
,
W. Y.
,
2020
, “
Analysis of China’s Oil and Gas Consumption Under Different Scenarios Toward 2050: An Integrated Modeling
,”
Energy
,
195
, p.
116991
.
4.
Ding
,
M. C.
,
Han
,
Y. G.
,
Wang
,
Y. F.
,
Liu
,
Y. G.
,
Liu
,
D. X.
, and
Qu
,
Z. T.
,
2021
, “
Experimental Investigation of the Heterogeneity Limit for the Application of Polymer Flooding in Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022901
.
5.
Sidiq
,
H.
,
Abdulsalam
,
V.
, and
Nabaz
,
Z.
,
2019
, “
Reservoir Simulation Study of Enhanced Oil Recovery by Sequential Polymer Flooding Method
,”
Adv. Geo-Energy Res.
,
3
(
2
), pp.
115
121
.
6.
Kakati
,
A.
,
Kumar
,
G.
, and
Sangwai
,
J. S.
,
2020
, “
Low Salinity Polymer Flooding: Effect on Polymer Rheology, Injectivity, Retention, and Oil Recovery Efficiency
,”
Energy Fuels
,
34
(
5
), pp.
5715
5732
.
7.
Saleh
,
L. D.
,
Wei
,
M. Z.
,
Zhang
,
Y. D.
, and
Bai
,
B. J.
,
2017
, “
Data Analysis for Polymer Flooding That Is Based on a Comprehensive Database
,”
SPE Reserv. Eval. Eng.
,
20
(
4
), pp.
876
893
.
8.
Zhao
,
Y.
,
Leng
,
J. Q.
,
Lin
,
B. H.
,
Wei
,
M. Z.
, and
Bai
,
B. J.
,
2021
, “
Experimental Study of Microgel Conformance-Control Treatment for a Polymer-Flooding Reservoir Containing Superpermeable Channels
,”
SPE J.
,
26
(
4
), pp.
2305
2317
.
9.
Askarinezhad
,
R.
,
Hatzignatiou
,
D. G.
, and
Stavland
,
A.
,
2018
, “
Core-Based Evaluation of Associative Polymers as Enhanced Oil Recovery Agents in Oil-Wet Formations
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032915
.
10.
Zhao
,
F. J.
,
Zhu
,
G. M.
,
Li
,
G.
,
Jiang
,
Y. F.
, and
Liu
,
L.
,
2022
, “
Feasibility Study on Further Enhanced Oil Recovery by ISC of Remaining Oil After Polymer Flooding
,”
RSC Adv.
,
12
(
29
), pp.
18646
18653
.
11.
Alhuraishawy
,
A. K.
,
Sun
,
X. D.
,
Bai
,
B. J.
,
Wei
,
M. Z.
, and
Imqam
,
A.
,
2018
, “
Areal Sweep Efficiency Improvement by Integrating Preformed Particle Gel and Low Salinity Water Flooding in Fractured Reservoirs
,”
Fuel
,
221
, pp.
380
392
.
12.
Wang
,
L. Z.
,
Long
,
Y. F.
, and
Bai
,
B. J.
,
2018
, “
Low Temperature Applicable Polyelectrolyte Gelator to Covalently Bridged Partially Hydrolyzed Poly(Acrylamide) In Situ Gel for Fossil Energy Recovery
,”
Chem. Eng. J.
,
334
, pp.
2558
2567
.
13.
Lian
,
P.
,
Li
,
L.
, and
Duan
,
T.
,
2018
, “
Injection Parameters Optimization of Cross-Linked Polymer Flooding by Genetic Algorithm
,”
Adv. Geo-Energy Res.
,
2
(
4
), pp.
441
449
.
14.
Gong
,
H. J.
,
Zhang
,
H.
,
Xu
,
L.
,
Li
,
K. N.
,
Yu
,
L.
,
San
,
Q.
,
Li
,
Y. J.
, and
Dong
,
M. Z.
,
2017
, “
The Synergistic Effect of Branched-Preformed Particle Gel and Hydrolyzed Polyacrylamide on Further-Enhanced Oil Recovery After Polymer Flooding
,”
Energy Fuels
,
31
(
8
), pp.
7904
7910
.
15.
Alhuraishawy
,
A. K.
,
Bai
,
B. J.
,
Imqam
,
A.
, and
Wei
,
M. Z.
,
2018
, “
Experimental Study of Combining Low Salinity Water Flooding and Preformed Particle Gel to Enhance Oil Recovery for Fractured Carbonate Reservoirs
,”
Fuel
,
214
, pp.
342
350
.
16.
He
,
H.
,
Fu
,
J. Y.
,
Zhao
,
H.
,
Yuan
,
F. Q.
,
Guo
,
L. L.
,
Li
,
Z. Y.
,
Wang
,
X.
, and
Peng
,
H.
,
2018
, “
Synergistic Mechanism of Hydrolyzed Polyacrylamide Enhanced Branched-Preformed Particle Gel for Enhanced Oil Recovery in Mature Oilfields
,”
Energy Fuels
,
32
(
11
), pp.
11093
11104
.
17.
Aqcheli
,
F.
,
Salehi
,
M. B.
,
Pahlevani
,
H.
, and
Taghikhani
,
V.
,
2020
, “
Rheological Properties and the Micromodel Investigation of Nanosilica Gel-Reinforced Preformed Particle Gels Developed for Improved Oil Recovery
,”
J. Pet. Sci. Eng.
,
192
, p.
107258
.
18.
Zhou
,
K.
,
Hou
,
J.
,
Sun
,
Q. C.
,
Guo
,
L. L.
,
Du
,
Q. J.
, and
Liu
,
Y. L.
,
2019
, “
Study on the Flow Resistance of the Dispersion System of Deformable Preformed Particle Gel in Porous Media Using LBM-DEM-IMB Method
,”
J. Dispersion Sci. Technol.
,
40
(
10
), pp.
1523
1530
.
19.
Yao
,
C. J.
,
Lei
,
G. L.
,
Hou
,
J.
,
Xu
,
X. H.
,
Wang
,
D.
, and
Steenhuis
,
T. S.
,
2015
, “
Enhanced Oil Recovery Using Micron-Size Polyacrylamide Elastic Microspheres: Underlying Mechanisms and Displacement Experiments
,”
Ind. Eng. Chem. Res.
,
54
(
43
), pp.
10925
10934
.
20.
Sun
,
Z.
,
Lu
,
X. G.
, and
Sun
,
W.
,
2017
, “
The Profile Control and Displacement Mechanism of Continuous and Discontinuous Phase Flooding Agent
,”
J. Dispersion Sci. Technol.
,
38
(
10
), pp.
1403
1409
.
21.
Sang
,
Q.
,
Li
,
Y. J.
,
Yu
,
L.
,
Li
,
Z. Q.
, and
Dong
,
M. Z.
,
2014
, “
Enhanced Oil Recovery by Branched-Preformed Particle Gel Injection in Parallel-Sandpack Models
,”
Fuel
,
136
, pp.
295
306
.
22.
Esfahlan
,
M. S.
,
Khodapanah
,
E.
, and
Tabatabaei-Nezhad
,
S. A.
,
2021
, “
Comprehensive Review on the Research and Field Application of Preformed Particle Gel Conformance Control Technology
,”
J. Pet. Sci. Eng.
,
202
, p.
108440
.
23.
Kang
,
W.
,
Kang
,
X.
,
Lashari
,
Z. A.
,
Li
,
Z.
,
Zhou
,
B.
,
Yang
,
H.
,
Sarsenbekuly
,
B.
, and
Aidarova
,
S.
,
2021
, “
Progress of Polymer Gels for Conformance Control in Oilfield
,”
Adv. Colloid Interface Sci.
,
289
, p.
102363
.
24.
Yin
,
D. D.
,
Zhao
,
D. F.
,
Gao
,
J. F.
, and
Gai
,
J.
,
2017
, “
Experimental Study of Enhancing Oil Recovery With Weak Base Alkaline/Surfactant/Polymer
,”
Int. J. Polym. Sci.
,
2017
, pp.
1
7
.
25.
Fan
,
W.
,
Jirui
,
H.
,
Zhiming
,
W.
,
Yunfei
,
M.
, and
Dongying
,
W.
,
2018
, “
An Enhanced Oil Recovery Technique by Targeted Delivery ASP Flooding
,”
Pet. Explor. Dev.
,
45
(
2
), pp.
321
327
.
26.
Gao
,
Q.
,
Zhong
,
C.
,
Han
,
P.
,
Cao
,
R.
, and
Jiang
,
G.
,
2020
, “
Synergistic Effect of Alkali–Surfactant–Polymer and Preformed Particle Gel on Profile Control After Polymer Flooding in Heterogeneous Reservoirs
,”
Energy Fuels
,
34
(
12
), pp.
15957
15968
.
27.
Wang
,
L.
,
Xia
,
H.
,
Han
,
P.
,
Cao
,
R.
,
Xu
,
T.
,
Li
,
W.
,
Zhang
,
H.
, and
Zhang
,
S.
,
2022
, “
Synthesis of New PPG and Study of Heterogeneous Combination Flooding Systems
,”
J. Dispersion Sci. Technol.
,
43
(
2
), pp.
164
177
.
28.
Wang
,
D. M.
, and
Seright
,
R. S.
,
2021
, “
Examination of Literature on Colloidal Dispersion Gels for Oil Recovery
,”
Pet. Sci.
,
18
(
4
), pp.
1097
1114
.
29.
Wu
,
D. J.
,
Zhou
,
K.
,
Zhao
,
F. J.
,
Lu
,
X. J.
,
An
,
Z. B.
,
Liu
,
S.
, and
Hou
,
J.
,
2022
, “
Determination of Permeability Contrast Limits for Applying Polymer Solutions and Viscoelastic Particle Suspensions in Heterogeneous Reservoirs
,”
Energy Fuels
,
36
(
14
), pp.
7495
7506
.
30.
Sun
,
L.
,
Li
,
B. Z.
,
Jiang
,
H. Q.
,
Li
,
Y.
, and
Jiao
,
Y. W.
,
2019
, “
An Injectivity Evaluation Model of Polymer Flooding in Offshore Multilayer Reservoir
,”
Energies
,
12
(
8
), p.
1444
.
31.
Jin
,
F. Y.
,
Li
,
Q. H.
,
He
,
Y.
,
Luo
,
Q.
, and
Pu
,
W. F.
,
2020
, “
Experimental Study on Enhanced Oil Recovery Method in Tahe High-Temperature and High-Salinity Channel Sand Reservoir: Combination of Profile Control and Chemical Flooding
,”
ACS Omega
,
5
(
11
), pp.
5657
5665
.
32.
Fang
,
Y. J.
,
Yang
,
E. R.
,
Guo
,
S. L.
,
Cui
,
C. Y.
, and
Zhou
,
C. C.
,
2022
, “
Study on Micro Remaining Oil Distribution of Polymer Flooding in Class-II B Oil Layer of Daqing Oilfield
,”
Energy
,
254
, p.
124479
.
33.
Zhao
,
G.
,
Dai
,
C.
, and
Zhao
,
M.
,
2014
, “
Investigation of the Profile Control Mechanisms of Dispersed Particle Gel
,”
PLoS One
,
9
(
6
), p.
e100471
.
34.
Bai
,
B. J.
,
Liu
,
Y. Z.
,
Coste
,
J. P.
, and
Li
,
L. X.
,
2007
, “
Preformed Particle Gel for Conformance Control: Transport Mechanism Through Porous Media
,”
SPE Reserv. Eval. Eng.
,
10
(
2
), pp.
176
184
.
35.
Archie
,
G. E.
,
1942
, “
The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics
,”
Trans. AIME
,
146
(
01
), pp.
54
62
.
36.
Li
,
K.-Z.
,
Ge
,
X.-M.
,
Wang
,
H.-L.
, and
Du
,
W.-J.
,
2011
, “
Study on Influence Factors of Saturation Index of Low Porosity and Permeability Cores Under Experiment Condition
,”
Tezhong Youqicang- Special Oil Gas Reser.
,
18
(
3
), pp.
35
38
.
You do not currently have access to this content.