Abstract

Structure characterization and comparison of the ultra-heavy oil and its four components are fundamental and crucial. In this work, nuclear magnetic resonance analyses were employed to quantitatively investigate carbon and hydrogen atom distributions. Combined with the gel permeation chromatography, elemental analysis, and X-ray diffraction results, average molecular structure parameters were determined for four components. Besides, an improved Brown–Ladner method was adopted to identify and adjust corresponding structural parameters, which considered influences of both heteroatoms (O, S, and N), and katacondensed and/or pericondensed system assumption on aromatic structures, compared with conventional methods. Moreover, molecular architectures of four components were, respectively, speculated and reconstructed based on this improved method, and the specific comparison reflected a higher accuracy. From this study, it could provide updated understandings of specific component structural information for the ultra-heavy oil to facilitate subsequent oil reactivity and simulation studies.

References

1.
American Association of Petroleum Geologists, Energy Minerals Division
,
2019
, “
Unconventional Energy Resources: 2017 Review
,”
Nat. Resour. Res.
,
28
(
4
), pp.
1661
1751
.
2.
Mohammed
,
I.
,
Mahmoud
,
M.
,
Shehri
,
D.
,
Husseiny
,
A.
, and
Alade
,
O.
,
2021
, “
Asphaltene Precipitation and Deposition: A Critical Review
,”
J. Petrol. Sci. Eng.
,
197
, pp.
107956
107983
.
3.
Lu
,
X.
,
Zhou
,
X.
,
Luo
,
J.
,
Zeng
,
F.
, and
Peng
,
X.
,
2019
, “
Characterization of Foamy Oil and Gas/Oil Two-Phase Flow in Porous Media for a Heavy Oil/Methane System
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032801
.
4.
Jaffe
,
S. B.
,
Freund
,
H.
, and
Olmstead
,
W. N.
,
2005
, “
Extension of Structure-Oriented Lumping to Vacuum Residua
,”
Ind. Eng. Chem. Res.
,
44
(
26
), pp.
9840
9852
.
5.
Borówka
,
G.
,
Bytnar
,
K.
,
Krzak
,
M.
,
Walendziewski
,
J.
, and
Zmuda
,
W. A.
,
2019
, “
Physicochemical Properties of Fuel Blends Composed of Heavy Fuel Oil and Tire-Derived Pyrolytic Oils
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042207
.
6.
Rudyk
,
S. N.
,
2018
, “
Relationships Between SARA Fractions of Conventional Oil, Heavy oil, Natural Bitumen and Residues
,”
Fuel
,
216
, pp.
330
340
.
7.
Zheng
,
C.
,
Zhu
,
M.
,
Zhou
,
W.
, and
Zhang
,
D.
,
2017
, “
A Preliminary Investigation Into the Characterization of Asphaltenes Extracted From an Oil Sand and Two Vacuum Residues From Petroleum Refining Using Nuclear Magnetic Resonance, DEPT, and MALDI-TOF
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032905
.
8.
Chen
,
Y.
,
Pu
,
W.
,
Liu
,
X.
,
Li
,
Y.
,
Gong
,
X.
,
Hui
,
J.
, and
Guo
,
C.
,
2019
, “
Specific Kinetic Triplet Estimation of Tahe Heavy Oil Oxidation Reaction Based on Non-Isothermal Kinetic Results
,”
Fuel
,
242
, pp.
545
552
.
9.
Chen
,
Y.-f.
,
Yin
,
H.
,
He
,
D.-l.
,
Gong
,
H.-f.
,
Liu
,
Z.-z.
,
Liu
,
Y.-q.
,
Zhang
,
X.-m.
, and
Pu
,
W.-f.
,
2022
, “
Low Temperature Oxidized Coke of the Ultra-Heavy Oil During In-Situ Combustion Process: Structural Characterization and Evolution Elucidation
,”
Fuel
,
313
, p.
122676
.
10.
Chen
,
Y.
,
Liu
,
Z.
,
Wang
,
M.
,
Yin
,
H.
,
He
,
D.
,
Gong
,
H.
, and
Zhang
,
X.
,
2022
, “
New Insights Into the Non-Isothermal Oxidation of Tight Oil: Experimental Study and Theoretical Prediction
,”
Fuel
,
326
, pp.
125011
125019
.
11.
Yang
,
C.
,
Xie
,
J.
,
Wu
,
S.
,
Amirkhanian
,
S.
,
Zhou
,
X.
,
Ye
,
Q.
,
Yang
,
D.
, and
Hu
,
R.
,
2020
, “
Investigation of Physicochemical and Rheological Properties of SARA Components Separated From Bitumen
,”
Constr. Build. Mater.
,
325
, pp.
117437
117449
.
12.
Du
,
X.
,
Pang
,
D.
,
Cheng
,
Y.
,
Zhao
,
Y.
,
Hou
,
Z.
,
Liu
,
Z.
,
Wu
,
T.
, and
Shu
,
C.
,
2021
, “
Adsorption of CH4, N2, CO2, and Their Mixture on Montmorillonite With Implications for Enhanced Hydrocarbon Extraction by Gas Injection
,”
Appl. Clay Sci.
,
210
, pp.
106160
106170
.
13.
Speight
,
J. G.
,
1971
, “
Structural Analysis of Athabasca Asphaltenes by Proton Magnetic Resonance Spectroscopy
,”
Fuel
,
50
(
2
), pp.
102
112
.
14.
Clutter
,
D. R.
,
Petrakis
,
L.
,
Stenger
,
R. L.
, and
Jensen
,
R. K.
,
1972
, “
Nuclear Magnetic Resonance Spectrometry of Petroleum Fractions. Carbon-13 and Proton Nuclear Magnetic Resonance Characterizations in Terms of Average Molecule Parameters
,”
Anal. Chem.
,
44
(
8
), pp.
1395
1405
.
15.
Schwager
,
I.
,
Farmanian
,
P. A.
,
Kwan
,
J. T.
,
Weinberg
,
V. A.
, and
Yen
,
T. F.
,
1983
, “
Characterization of the Microstructure and Macrostructure of Coal-Derived Asphaltenes by Nuclear Magnetic Resonance Spectrometry and X-Ray Diffraction
,”
Anal. Chem.
,
55
(
1
), pp.
42
45
.
16.
Christopher
,
J.
,
Sarpal
,
A. S.
,
Kapur
,
G. S.
,
1996
, “
Chemical Structure of Bitumen-Derived Asphaltenes by Nuclear Magnetic Resonance Spectroscopy and X-Ray Diffractometry
,”
Fuel
,
75
(
8
), pp.
999
1008
.
17.
Mousavi
,
S. M. R.
,
Najafi
,
I.
,
Ghazanfari
,
M. H.
, and
Amani
,
M.
,
2012
, “
Comparison of Ultrasonic Wave Radiation Effects on Asphaltene Aggregation in Toluene–Pentane Mixture Between Heavy and Extra Heavy Crude Oils
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022001
.
18.
Kamínski
,
M.
,
Kartanowicz
,
R.
,
Gilgenast
,
E.
, and
Namieśnik
,
J.
,
2005
, “
High-Performance Liquid Chromatography in Group-Type Separation and Technical or Process Analytics of Petroleum Products
,”
Crit. Rev. Anal. Chem.
,
35
(
3
), pp.
193
216
.
19.
Liu
,
Y.
,
He
,
Y.
,
Liu
,
Y.
,
Jiang
,
Y.
,
Zhang
,
Q.
,
Sun
,
Z.
, and
Di
,
C.
,
2022
, “
A Mechanistic Study of Wettability Alteration of Calcite as an Example of Carbonate Reservoirs Using Molecular Dynamics Simulation
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
103006
.
20.
Ren
,
Y.
,
Liao
,
Z.
,
Sun
,
J.
,
Jiang
,
B.
,
Wang
,
J.
,
Yang
,
Y.
, and
Wu
,
Q.
,
2019
, “
Molecular Reconstruction: Recent Progress Toward Composition Modeling of Petroleum Fractions
,”
Chem. Eng. J.
,
357
, pp.
761
775
.
21.
Chen
,
Y.-f.
,
Pu
,
W.-f.
,
Li
,
Y.-b.
,
Liu
,
X.-l.
,
Jin
,
F.-y.
,
Hui
,
J.
,
Gong
,
X.-l.
, and
Guo
,
C.
,
2018
, “
Novel Insight Into the Viscosity-Temperature Characteristic by the Comparison of Tahe Ordinary- and Ultra-Heavy Oils
,”
Energy Fuel
,
32
(
12
), pp.
12308
12318
.
22.
Chen
,
Y.-f.
,
Pu
,
W.-f.
,
Liu
,
X.-l.
,
Li
,
Y.-b.
,
Varfolomeev
,
M. A.
, and
Hui
,
J.
,
2019
, “
A Preliminary Feasibility Analysis of In Situ Combustion in a Deep Fractured-Cave Carbonate Heavy Oil Reservoir
,”
J. Pet. Sci. Eng.
,
174
, pp.
446
455
.
23.
Williams
,
R. B.
,
1958
,
ASTM Special Technical Publication 224
,
American Society for Testing Materials (ASTM)
,
Philadelphia, PA
, pp.
168
194
.
24.
Hirsch
,
E.
, and
Altgelt
,
K.H.
,
1970
, “
Integrated Structural Analysis. Method for the Determination of Average Structural Parameters of Petroleum Heavy Ends
,”
Anal. Chem.
,
42
(
12
), pp.
1330
1339
.
25.
Liang
,
W. J.
,
2000
,
Heavy Oil Chemistry
,
University of Petroleum Press
,
Beijing
.
26.
Qing
,
W.
,
Chunxia
,
J.
,
Jianxin
,
G.
, and
Wenxue
,
G.
,
2016
, “
1H NMR and 13C NMR Studies of Oil From Pyrolysis of Indonesian Oil Sands
,”
Energy Fuel
,
30
(
3
), pp.
2478
2491
.
27.
Borówka
,
G.
,
Bytnar
,
K.
,
Krzak
,
M.
,
Walendziewski
,
J.
, and
Zmuda
,
W. A.
,
2019
, “
Physicochemical Properties of Fuel Blends Composed of Heavy Fuel Oil and Tire-Derived Pyrolytic Oils
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042207
.
28.
Gupta
,
P. L.
,
Dogra
,
P. V.
,
Kuchhal
,
R. K.
, and
Kumar
,
P.
,
1986
, “
Estimation of Average Structural Parameters of Petroleum Crudes and Coal-Derived Liquids by 13C and 1H NMR
,”
Fuel
,
65
(
4
), pp.
515
519
.
29.
Zhou
,
H.
,
Ren
,
Q.
, and
Long
,
J.
,
2015
, “
Applications of Molecular Simulation Technology in the Field of Oil Refining
,”
Acta Petrol. Sin. (Petrol. Proc. Sec.)
,
31
(
2
), pp.
360
368
.
30.
Harmanware
,
A. E.
, and
Ferrell
,
J. R.
,
2018
, “
Methods and Challenges in the Determination of Molecular Weight Metrics of Bio-Oils
,”
Energy Fuel
,
32
(
9
), pp.
8905
8920
.
31.
Silva
,
S. L.
,
Silva
,
A. M. S.
,
Ribeiro
,
J. C.
,
Martins
,
F. G.
,
Da Silva
,
F. A.
, and
Silva
,
C. M.
,
2011
, “
Chromatographic and Spectroscopic Analysis of Heavy Crude Oil Mixtures With Emphasis in Nuclear Magnetic Resonance Spectroscopy: A Review
,”
Anal. Chim. Acta
,
707
(
1
), pp.
18
37
.
32.
Michon
,
L.
,
Martin
,
D.
,
Planche
,
J.-P.
, and
Hanquet
,
B.
,
1997
, “
Estimation of Average Structural Parameters of Bitumens by 13C Nuclear Magnetic Resonance Spectroscopy
,”
Fuel
,
76
(
1
), pp.
9
15
.
33.
Andrews
,
A. B.
,
Edwards
,
J. C.
,
Pomerantz
,
A. E.
,
Mullins
,
O. C.
,
Nordlund
,
D.
, and
Norinaga
,
K.
,
2011
, “
Comparison of Coal-Derived and Petroleum Asphaltenes by 13C Nuclear Magnetic Resonance, DEPT, and XRS
,”
Energy Fuel
,
25
(
7
), pp.
3068
3076
.
34.
Zheng
,
C.
,
Zhu
,
M.
,
Zareie
,
R.
, and
Zhang
,
D.
,
2018
, “
Characterisation of Subfractions of Asphaltenes Extracted From an Oil Sand Using NMR, DEPT and MALDI-TOF
,”
J. Pet. Sci. Eng.
,
168
, pp.
148
155
.
35.
Wang
,
Q.
,
Cui
,
D.
,
Wang
,
P.
,
Bai
,
J.
,
Wang
,
Z.
, and
Liu
,
B.
,
2018
, “
A Comparison of the Structures of >300 °C Fractions in Six Chinese Shale Oils Obtained From Different Locations Using 1H NMR, 13C NMR and FT-IR Analyses
,”
Fuel
,
211
, pp.
341
352
.
36.
Tanaka
,
R.
,
Sato
,
E.
,
Hunt
,
J. E.
,
Winans
,
R. E.
,
Sato
,
S.
, and
Takanohashi
,
T.
,
2004
, “
Characterization of Asphaltene Aggregates Using X-Ray Diffraction and Small-Angle X-Ray Scattering
,”
Energy Fuel
,
18
(
4
), pp.
1118
1125
.
You do not currently have access to this content.