Abstract

Wind energy is a primary renewable energy source and has been one of the most promising sources of clean, long-term energy. Self-healing is the autonomous ability to recover from failure. Self-healing material systems in wind turbine blades can reduce maintenance, repair, and energy compensation costs. Investigation of the self-healing wind turbine blades is of core interest in this study. This paper initially introduces self-healing properties into vacuum-assisted resin transfer molding molded fiber-reinforced polymer (FRP) nanocomposites and lab preparation for studying the effect of incorporation of carbon nanotubes (CNTs) on the self-healing capabilities using dicyclopentadiene (DCPD) and Grubbs first-generation catalyst. A vascular network was imprinted in a single glass fiber FRP sheet utilizing hexagonal 3D printed templates, infused with DCPD, and later embedded into a multilayer FRP. The effect of adding epoxy resin with 0.3 wt% CNTs to the multilayer FRP was investigated. The samples were tested before and after recovery by performing the three-point bending test. The maximum flexural strengths and percent recovery for the non-healed and healed FRP samples were calculated. Interestingly, the strength of the samples increased at least ten times after the addition of CNTs to the composite, and the percentage of stress recovery was doubled on average.

References

1.
Electricity Generation From Wind—U.S. Energy Information Administration (EIA)
,” https://www.eia.gov/energyexplained/wind/electricity-generation-from-wind.php, Accessed April 12, 2022.
2.
2019 Wind Energy Data & Technology Trends
,” Energy.gov, https://www.energy.gov/eere/wind/2019-wind-energy-data-technology-trends, Accessed April 12, 2022.
3.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
4.
A. B. E. N. CNN
, “
US Wind Energy Just Hit a Major Milestone
,”
CNN
, https://www.cnn.com/2022/04/06/politics/wind-energy-milestone-us-climate/index.html, Accessed April 12, 2022.
5.
Rodríguez
,
J.
,
Riera
,
F.
,
Marti
,
J.
,
Carretero
,
P.
, and
Álvarez
,
A.
,
2018
, “
Cracking Problems in Wind Turbines
,”
Proceedings of the 2018 SIMULIA Global User Meeting
,
Boston, MA
,
June 18–21
.
6.
Alkhalidi
,
A.
,
Al Salaitah
,
M.
, and
Al Basyouni
,
M.
,
2021
, “
Wind Turbine Runaway Safety System : Design and Concept
,”
2021 12th International Renewable Engineering Conference (IREC)
,
Amman, Jordan
,
Apr. 14–15
, pp.
1
7
.
7.
Reddy
,
K. R.
,
El-Zein
,
A.
,
Airey
,
D. W.
,
Alonso-Marroquin
,
F.
,
Schubel
,
P.
, and
Manalo
,
A.
,
2020
, “
Self-Healing Polymers: Synthesis Methods and Applications
,”
Nano-Struct. Nano-Objects
,
23
(
1
), p.
100500
.
8.
White
,
S. R.
,
Blaiszik
,
B. J.
,
Kramer
,
S. L. B.
,
Olugebefola
,
S. C.
,
Moore
,
J. S.
, and
Sottos
,
N. R.
,
2011
, “
Self-Healing Polymers and Composites: Capsules, Circulatory Systems and Chemistry Allow Materials to Fix Themselves
,”
Am. Sci.
,
99
(
5
), pp.
392
399
.
9.
D’Elia
,
E.
,
Eslava
,
S.
,
Miranda
,
M.
,
Georgiou
,
T. K.
, and
Saiz
,
E.
,
2016
, “
Autonomous Self-Healing Structural Composites With Bio-Inspired Design
,”
Sci. Rep.
,
6
(
1
), pp.
1
11
.
10.
Amano
,
R. S.
,
Lewinski
,
G.
, and
Shen
,
R.
,
2021
, “
Imprinted Glass Fiber-Reinforced Polymer Vascular Networks for Creating Self-Healing Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062107
.
11.
Buyuknalcaci
,
F. N.
,
Polat
,
Y.
,
Negawo
,
T. A.
,
Döner
,
E.
,
Alam
,
M. S.
,
Hamouda
,
T.
, and
Kilic
,
A.
,
2018
,
Polymer-Based Nanocomposites for Energy and Environmental Applications
,
M.
Jawaid
, and
M. M.
Khan
, eds.,
Woodhead Publishing
,
Sawston, UK
, pp.
635
661
.
12.
Ma
,
P.-C.
, and
Zhang
,
Y.
,
2014
, “
Perspectives of Carbon Nanotubes/Polymer Nanocomposites for Wind Blade Materials
,”
Renew. Sustain. Energy Rev.
,
30
(
1
), pp.
651
660
.
13.
Rulin
,
S.
,
Amano
,
D.
,
Lewinski
,
G.
, and
Koralagundi Matt
,
A. K.
,
2019
, “
A New Vascular System Highly Efficient in the Storage and Transport of Healing Agent for Self-Healing Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
021503
.
14.
Mishnaevsky Jr.
,
L.
, and
Thomsen
,
K.
,
2020
, “
Costs of Repair of Wind Turbine Blades: Influence of Technology Aspects
,”
Wind Energy
,
23
(
12
), pp.
2247
2255
.
15.
Wind Turbine Operations & Maintenance Market—Global Market Size, Trends, and Key Country Analysis to 2025
,” GlobalData Report Store, 2017, https://store.globaldata.com/report/wind-turbine-operations-maintenance-market-global-market-size-trends-and-key-country-analysis-to-2025/, Accessed April 12, 2022.
16.
Global Wind Operations & Maintenance Market to Double by 2025—Climate Action
,” https://www.climateaction.org/news/global-wind-operations-maintenance-market-to-double-by-2025, Accessed April 12, 2022.
17.
Wind Blade Repair: Planning, Safety, Flexibility
,” https://www.compositesworld.com/columns/wind-blade-repair-planning-safety-flexibility(2), Accessed April 12, 2022.
18.
Turnberg
,
J.
, and
Filippelli
,
K.
,
2005
, “
Advisory Circular Aircraft Propeller Maintenance
,” U.S. Department of Transportation, Federal Aviation Administration, Aircraft Propeller Maintenance, AC 20-37E, pp.
1
39
.
19.
Self-Healing Materials Systems: Overview of Major Approaches and Recent Developed Technologies
,” https://www.hindawi.com/journals/amse/2012/854203/, Accessed April 12, 2022.
20.
White
,
S. R.
,
Sottos
,
N. R.
,
Geubelle
,
P. H.
,
Moore
,
J. S.
,
Kessler
,
M. R.
,
Sriram
,
S. R.
,
Brown
,
E. N.
, and
Viswanathan
,
S.
,
2001
, “
Autonomic Healing of Polymer Composites
,”
Nature
,
409
(
6822
), pp.
794
797
.
21.
Mishnaevsky
,
L.
,
Branner
,
K.
,
Petersen
,
H. N.
,
Beauson
,
J.
,
McGugan
,
M.
, and
Sørensen
,
B. F.
,
2017
, “
Materials for Wind Turbine Blades: An Overview
,”
Materials
,
10
(
11
), p.
1285
.
22.
Blaiszik
,
B. J.
,
Kramer
,
S. L. B.
,
Olugebefola
,
S. C.
,
Moore
,
J. S.
,
Sottos
,
N. R.
, and
White
,
S. R.
,
2010
, “
Self-Healing Polymers and Composites
,”
Annu. Rev. Mater. Res.
,
40
(
1
), pp.
179
211
.
23.
Shields
,
Y.
,
Belie
,
N. D.
,
Jefferson
,
A.
, and
Tittelboom
,
K. V.
,
2021
, “
A Review of Vascular Networks for Self-Healing Applications
,”
Smart Mater. Struct.
,
30
(
6
), p.
063001
.
24.
Qamar
,
I. P. S.
,
Sottos
,
N. R.
, and
Trask
,
R. S.
,
2020
, “
Grand Challenges in the Design and Manufacture of Vascular Self-Healing
,”
Multifunct. Mater.
,
3
(
1
), p.
013001
.
25.
Rulin
,
S.
,
Amano
,
R.
, and
Lewinski
,
G.
,
2019
, “
Self-Healing Performance Comparison Between Two Promising Vascular Vessel Systems of Wind Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
111203
.
26.
Zhang
,
F.
,
Zhang
,
L.
,
Yaseen
,
M.
, and
Huang
,
K.
,
2021
, “
A Review on the Self-Healing Ability of Epoxy Polymers
,”
J. Appl. Polym. Sci.
,
138
(
16
), p.
50260
.
27.
Motuku
,
M.
,
Vaidya
,
U. K.
, and
Janowski
,
G. M.
,
1999
, “
Parametric Studies on Self-Repairing Approaches for Resin Infused Composites Subjected to Low Velocity Impact
,”
Smart Mater. Struct.
,
8
(
5
), pp.
623
638
.
28.
Toohey
,
K. S.
,
Sottos
,
N. R.
,
Lewis
,
J. A.
,
Moore
,
J. S.
, and
White
,
S. R.
,
2007
, “
Self-Healing Materials With Microvascular Networks
,”
Nat. Mater.
,
6
(
8
), pp.
581
585
.
29.
Patrick
,
J. F.
,
Hart
,
K. R.
,
Krull
,
B. P.
,
Diesendruck
,
C. E.
,
Moore
,
J. S.
,
White
,
S. R.
, and
Sottos
,
N. R.
,
2014
, “
Continuous Self-Healing Life Cycle in Vascularized Structural Composites
,”
Adv. Mater.
,
26
(
25
), pp.
4302
4308
.
30.
Hansen
,
C. J.
,
Wu
,
W.
,
Toohey
,
K. S.
,
Sottos
,
N. R.
,
White
,
S. R.
, and
Lewis
,
J. A.
,
2009
, “
Self-Healing Materials With Interpenetrating Microvascular Networks
,”
Adv. Mater.
,
21
(
41
), pp.
4143
4147
.
31.
Matt
,
A. K. K.
,
Beyhaghi
,
S.
,
Amano
,
R. S.
, and
Guo
,
J.
,
2017
, “
Self-Healing of Wind Turbine Blades Using Microscale Vascular Vessels
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051208
.
32.
Bakis
,
C. E.
,
Bank
,
L. C.
,
Brown
,
V. L.
,
Cosenza
,
E.
,
Davalos
,
J. F.
,
Lesko
,
J. J.
,
Machida
,
A.
,
Rizkalla
,
S. H.
, and
Triantafillou
,
T. C.
,
2002
, “
Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review
,”
J. Compos. Construct.
,
6
(
2
), pp.
73
87
.
33.
Grimmer
,
C.
, and
Dharan
,
H.
,
2008
, “
High-Cycle Fatigue of Hybrid Carbon Nanotube/Glass Fiber/Polymer Composites
,”
J. Mater. Sci.
,
43
(
13
), pp.
4487
4492
.
34.
Kim
,
H.
,
2014
, “
Enhanced Crack Detection Sensitivity of Carbon Fiber Composites by Carbon Nanotubes Directly Grown on Carbon Fibers
,”
Compos. Part B Eng.
,
60
(
1
), pp.
284
291
.
35.
Kimura
,
M.
,
Watanabe
,
T.
,
Takeichi
,
Y.
, and
Niwa
,
Y.
,
2019
, “
Nanoscopic Origin of Cracks in Carbon Fibre-Reinforced Plastic Composites
,”
Sci. Rep.
,
9
(
1
), p.
19300
.
36.
Rahmat
,
M.
,
Jakubinek
,
M. B.
,
Ashrafi
,
B.
,
Martinez-Rubi
,
Y.
, and
Simard
,
B.
,
2022
, “
Glass Fiber–Epoxy Composites With Boron Nitride Nanotubes for Enhancing Interlaminar Properties in Structures
,”
ACS Omega
,
7
(
12
), pp.
10674
10686
.
37.
Su
,
C.
,
Wang
,
X.
,
Ding
,
L.
, and
Yu
,
P.
,
2021
, “
Enhancement of Mechanical Behavior of Resin Matrices and Fiber-Reinforced Polymer Composites by Incorporation of Multi-Wall Carbon Nanotubes
,”
Polym. Test.
,
96
(
1
), p.
107077
.
38.
Warrier
,
A.
,
Godara
,
A.
,
Rochez
,
O.
,
Mezzo
,
L.
,
Luizi
,
F.
,
Gorbatikh
,
L.
,
Lomov
,
S. V.
,
VanVuure
,
A. W.
, and
Verpoest
,
I.
,
2010
, “
The Effect of Adding Carbon Nanotubes to Glass/Epoxy Composites in the Fibre Sizing and/or the Matrix
,”
Compos. Part A Appl. Sci. Manuf.
,
41
(
4
), pp.
532
538
.
39.
Hsieh
,
T. H.
,
Kinloch
,
A. J.
,
Taylor
,
A. C.
, and
Kinloch
,
I. A.
,
2011
, “
The Effect of Carbon Nanotubes on the Fracture Toughness and Fatigue Performance of a Thermosetting Epoxy Polymer
,”
J. Mater. Sci.
,
46
(
23
), p.
7525
.
40.
Ma
,
P.-C.
,
Siddiqui
,
N. A.
,
Marom
,
G.
, and
Kim
,
J.-K.
,
2010
, “
Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review
,”
Compos. Part A Appl. Sci. Manuf.
,
41
(
10
), pp.
1345
1367
.
41.
Geng
,
Y.
,
Liu
,
M. Y.
,
Li
,
J.
,
Shi
,
X. M.
, and
Kim
,
J. K.
,
2008
, “
Effects of Surfactant Treatment on Mechanical and Electrical Properties of CNT/Epoxy Nanocomposites
,”
Compos. Part A Appl. Sci. Manuf.
,
12
(
39
), pp.
1876
1883
.
42.
Zhang
,
Z.
,
Liu
,
R.
,
Li
,
W.
,
Liu
,
Y.
,
Pei
,
Z.
,
Qiu
,
J.
, and
Wang
,
S.
,
2021
, “
Frontal Polymerization-Assisted 3D Printing of Short Carbon Fibers/Dicyclopentadiene Composites
,”
J. Manuf. Process.
,
71
(
1
), pp.
753
762
.
43.
Instron Company
, “
3360 Series Universal Testing Machines
,” https://www.instron.com/∼/media/literature-library/products/2011/06/3300-series-table-model.pdf, Accessed April 9, 2022.
44.
ASTM D7264/D7264M-15 (2015) Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, American Society of Testing Materials, West Conshohocken—References—Scientific Research Publishing
,” https://www.scirp.org/%28S%28351jmbntvnsjt1aadkozje%29%29/reference/reference spapers.aspx?referenceid=2095833, Accessed April 12, 2022.
45.
Overview of Materials for Polydicyclopentadiene (PDCPD)
,” https://www.matweb.com/search/datasheettext.aspx?matid=78164, Accessed May 4, 2022.
You do not currently have access to this content.