Abstract

This research aims to optimize deep learning models constituting long short-term memory and dense neural networks using the genetic algorithm (GA). This novel scenario has been applied to automatically identify reservoir types (homogeneous and natural fracture) and their external boundaries (infinite acting, circularly closed, and constant pressure) and estimate the related parameters. The suggested scenario includes two classifiers and 48 predictors to handle reservoir/boundary model detection and parameter estimation simultaneously. This methodology can recognize the reservoir/boundary models and predict wellbore storage constant, storativity ratio, skin factor (S), CD (dimensionless wellbore storage constant) × e2S, and inter-porosity flow coefficient. The pressure signals required for training the classifier and predictor models have been simulated by solving governing equations with added noise percentages. The hyperparameters of the intelligent models have been carefully tuned using the genetic algorithm to improve their classification/prediction accuracy. The GA-optimized classifier attained 94.79% and 94.29% accuracy over the training and testing groups of the pressure transient signal, respectively. The separately trained 24 optimized predictors converged well to estimate the reservoir parameters. The reliability of the proposed scenario has also been validated using two actual-field well-testing signals. The results indicate that the suggested procedure accurately identifies the reservoir/boundary model and efficiently approximates the associated parameters.

References

1.
Nait Amar
,
M.
, and
Zeraibi
,
N.
,
2020
, “
A Combined Support Vector Regression With Firefly Algorithm for Prediction of Bottom Hole Pressure
,”
SN Appl. Sci.
,
2
(
1
), pp.
1
12
.
2.
Vaferi
,
B.
, and
Eslamloueyan
,
R.
,
2015
, “
Hydrocarbon Reservoirs Characterization by Co-Interpretation of Pressure and Flow Rate Data of the Multi-Rate Well Testing
,”
J. Pet. Sci. Eng.
,
135
, pp.
59
72
.
3.
Song
,
S.
,
Shi
,
B.
,
Yu
,
W.
,
Ding
,
L.
,
Liu
,
Y.
,
Li
,
W.
, and
Gong
,
J.
,
2020
, “
Study on the Optimization of Hydrate Management Strategies in Deepwater Gas Well Testing Operations
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
033002
.
4.
Xing
,
C.
,
Yin
,
H.
,
Yuan
,
H.
,
Fu
,
J.
, and
Xu
,
G.
,
2022
, “
Pressure Transient Analysis for Fracture-Cavity Carbonate Reservoirs With Large-Scale Fractures—Caves in Series Connection
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
052901
.
5.
Nategh
,
M.
,
Vaferi
,
B.
, and
Riazi
,
M.
,
2019
, “
Orthogonal Collocation Method for Solving the Diffusivity Equation: Application on Dual Porosity Reservoirs With Constant Pressure Outer Boundary
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042001
.
6.
Chen
,
Y.
,
Zhang
,
Q.
,
Zhao
,
Z.
,
Li
,
C.
, and
Wang
,
B.
,
2022
, “
Semi-Analytical Model for the Transient Analysis of the Pressure in Vertically Fractured Wells in Reservoirs Considering the Influence of Natural Fractures
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
083005
.
7.
Qin
,
J.
,
Xu
,
Y.
,
Tang
,
Y.
,
Liang
,
R.
,
Zhong
,
Q.
,
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2022
, “
Impact of Complex Fracture Networks on Rate Transient Behavior of Wells in Unconventional Reservoirs Based on Embedded Discrete Fracture Model
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
083007
.
8.
Dong
,
J.
,
Deng
,
R.
,
Quanying
,
Z.
,
Cai
,
J.
,
Ding
,
Y.
, and
Li
,
M
,
2021
, “
Research on Recognition of Gas Saturation in Sandstone Reservoir Based on Capture Mode
,”
Appl. Radiat. Isot.
,
178
, p.
109939
.
9.
Gringarten
,
A. C.
,
Bourdet
,
D. P.
,
Landel
,
P. A.
, and
Kniazeff
,
V. J.
,
1979
, “
A Comparison Between Different Skin and Wellbore Storage Type-Curves for Early-Time Transient Analysis
,”
Proceedings—SPE Annual Technical Conference and Exhibition
,
Las Vegas, NV
, OnePetro.
10.
Kuchuk
,
F.
, and
Biryukov
,
D.
,
2015
, “
Pressure Transient Tests and Flow Regimes in Fractured Reservoirs
,”
SPE Reserv. Eval. Eng.
,
18
(
02
), pp.
187
204
.
11.
Zhang
,
L.
,
Huang
,
M.
,
Li
,
M.
,
Lu
,
S.
,
Yuan
,
X.
, and
Li
,
J.
,
2022
, “
Experimental Study on Evolution of Fracture Network and Permeability Characteristics of Bituminous Coal Under Repeated Mining Effect
,”
Nat. Resour. Res.
,
31
(
1
), pp.
463
486
.
12.
Zhang
,
L.
,
Huang
,
M.
,
Xue
,
J.
,
Li
,
M.
, and
Li
,
J.
,
2021
, “
Repetitive Mining Stress and Pore Pressure Effects on Permeability and Pore Pressure Sensitivity of Bituminous Coal
,”
Nat. Resour. Res.
,
30
(
6
), pp.
4457
4476
.
13.
Bourdet
,
D.
,
Ayoub
,
J. A.
, and
Pirard
,
Y. M.
,
1989
, “
Use of Pressure Derivative in Well Test Interpretation
,”
SPE Form. Eval.
,
4
(
2
), pp.
293
302
.
14.
Pandey
,
R. K.
,
Dahiya
,
A. K.
, and
Mandal
,
A.
,
2021
, “
Identifying Applications of Machine Learning and Data Analytics Based Approaches for Optimization of Upstream Petroleum Operations
,”
Energy Technol.
,
9
(
1
), p.
2000749
.
15.
Siddig
,
O.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2022
, “
Applying Different Artificial Intelligence Techniques in Dynamic Poisson’s Ratio Prediction Using Drilling Parameters
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073006
.
16.
Rathod
,
U. H.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2022
, “
On the Application of Machine Learning in Savonius Wind Turbine Technology: An Estimation of Turbine Performance Using Artificial Neural Network and Genetic Expression Programming
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061301
.
17.
Çolak
,
A. B.
,
2021
, “
An Experimental Study on the Comparative Analysis of the Effect of the Number of Data on the Error Rates of Artificial Neural Networks
,”
Int. J. Energy Res.
,
45
(
1
), pp.
478
500
.
18.
Li
,
B.
,
Feng
,
Y.
,
Xiong
,
Z.
,
Yang
,
W.
, and
Liu
,
G.
,
2021
, “
Research on AI Security Enhanced Encryption Algorithm of Autonomous IoT Systems
,”
Inf. Sci.
,
575
, pp.
379
398
.
19.
Zhang
,
L.
,
Zheng
,
H.
,
Cai
,
G.
,
Zhang
,
Z.
,
Wang
,
X.
, and
Koh
,
L. H.
,
2022
, “
Power-Frequency Oscillation Suppression Algorithm for AC Microgrid With Multiple Virtual Synchronous Generators Based on Fuzzy Inference System
,”
IET Renew. Power Gener.
,
16
(
8
), pp.
1589
1601
.
20.
Ahmed
,
A.
,
Elkatatny
,
S.
, and
Ali
,
A.
,
2021
, “
Fracture Pressure Prediction Using Surface Drilling Parameters by Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
033201
.
21.
Al Dhaif
,
R.
,
Ibrahim
,
A. F.
, and
Elkatatny
,
S.
,
2022
, “
Prediction of Surface Oil Rates for Volatile Oil and Gas Condensate Reservoirs Using Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
033001
.
22.
Al-Kaabi
,
A. U.
, and
Lee
,
W. J.
,
1993
, “
Using Artificial Neural Networks to Identify the Well Test Interpretation Model (Includes Associated Papers 28151 and 28165)
,”
SPE Form. Eval.
,
8
(
3
), pp.
233
240
.
23.
Deng
,
Y.
,
Chen
,
Q.
, and
Wang
,
J.
,
2000
, “
The Artificial Neural Network Method of Well-Test Interpretation Model Identification and Parameter Estimation
,”
International Oil and Gas Conference and Exhibition in China
,
Beijing, China
, OnePetro.
24.
Kumar Pandey
,
R.
,
Kumar
,
A.
,
Mandal
,
A.
, and
Vaferi
,
B.
,
2022
, “
Employing Deep Learning Neural Networks for Characterizing Dual-Porosity Reservoirs Based on Pressure Transient Tests
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
113002
.
25.
Li
,
J.
,
Niu
,
H.
,
Meng
,
F.
, and
Li
,
R.
,
2022
, “
Prediction of Short-Term Photovoltaic Power Via Self-Attention-Based Deep Learning Approach
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
101301
.
26.
Lee
,
Y.
,
Kang
,
B.
,
Kim
,
J.
, and
Choe
,
J.
,
2022
, “
Model Regeneration Scheme Using a Deep Learning Algorithm for Reliable Uncertainty Quantification of Channel Reservoirs
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
93004
.
27.
Zhang
,
L.
,
Zhang
,
H.
, and
Cai
,
G.
,
2022
, “
The Multi-Class Fault Diagnosis of Wind Turbine Bearing Based [Q7]on Multi-Source Signal Fusion and Deep Learning Generative Model
,”
IEEE Trans. Instrum. Meas.
,
71
, pp.
1
12
.
28.
Xiong
,
Z.
,
Mo
,
F.
,
Zhao
,
X.
,
Xu
,
F.
,
Zhang
,
X.
, and
Wu
,
Y.
,
2022
, “
Dynamic Texture Classification Based on 3D ICA-Learned Filters and Fisher Vector Encoding in Big Data Environment
,”
J. Signal Process. Syst.
, pp.
1
15
.
29.
Zhong
,
L.
,
Fang
,
Z.
,
Liu
,
F.
,
Yuan
,
B.
,
Zhang
,
G.
, and
Lu
,
J.
,
2021
, “
Bridging the Theoretical Bound and Deep Algorithms for Open Set Domain Adaptation
,”
IEEE Trans. Neural Netw. Learn. Syst.
, pp.
1
15
.
30.
Lu
,
C.
,
Liu
,
Q.
,
Zhang
,
B.
, and
Yin
,
L.
,
2022
, “
A Pareto-Based Hybrid Iterated Greedy Algorithm for Energy-Efficient Scheduling of Distributed Hybrid Flowshop
,”
Expert Syst. Appl.
,
204
, p.
117555
.
31.
Pandey
,
R. K.
,
Dahiya
,
A. K.
,
Pandey
,
A. K.
, and
Mandal
,
A.
,
2022
, “
Optimized Deep Learning Model Assisted Pressure Transient Analysis for Automatic Reservoir Characterization
,”
Pet. Sci. Technol.
,
40
(
6
), pp.
659
677
.
32.
Pandey
,
R. K.
,
Kumar
,
A.
, and
Ganju
,
R.
,
2021
, “
Sequential Modeling for Automatic Interpretation of Pressure Transient Test
,”
2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)
,
IEEE
, Noida, India
,
Sept. 3–4
.
33.
Moghimihanjani
,
M.
, and
Vaferi
,
B.
,
2021
, “
A Combined Wavelet Transform and Recurrent Neural Networks Scheme for Identification of Hydrocarbon Reservoir Systems From Well Testing Signals
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
013001
.
34.
Galdi
,
V.
,
Pierro
,
V.
, and
Pinto
,
I. M.
,
1998
, “
Evaluation of Stochastic-Resonance-Based Detectors of Weak Harmonic Signals in Additive White Gaussian Noise
,”
Phys. Rev. E
,
57
(
6
), pp.
6470
6479
.
35.
Horne
,
R.
,
1995
,
Modern Well Test Analysis: A Computer-Aided Approach
,
Petroway Inc
,
Palo Alto, CA
.
36.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
37.
Ng
,
C. S. W.
,
Ghahfarokhi
,
A. J.
, and
Amar
,
M. N.
,
2022
, “
Production Optimization Under Waterflooding With Long Short-Term Memory and Metaheuristic Algorithm
,”
Petroleum.
, pp.
1
8
.
38.
Alexandropoulos
,
S.-A. N.
,
Aridas
,
C. K.
,
Kotsiantis
,
S. B.
, and
Vrahatis
,
M. N.
,
2019
, “
A Deep Dense Neural Network for Bankruptcy Prediction
,”
International Conference on Engineering Applications of Neural Networks
,
Cham
,
May 15
, Springer, pp.
435
444
..
39.
Zbigniew
,
M.
,
1996
, “
Genetic Algorithms + Data Structures = Evolution Programs
,”
Comput. Stat.
,
24
(
3
) pp.
372
373
.
40.
Xie
,
Y.
,
Sheng
,
Y.
,
Qiu
,
M.
, and
Gui
,
F.
,
2022
, “
An Adaptive Decoding Biased Random Key Genetic Algorithm for Cloud Workflow Scheduling
,”
Eng. Appl. Artif. Intell.
,
112
, p.
104879
.
41.
Haupt
,
R. L.
,
1995
, “
An Introduction to Genetic Algorithms for Electromagnetics
,”
IEEE Antennas Propag. Mag
,
37
(
2
), pp.
7
15
.
42.
Goldberg
,
D. E.
,
1989
, “
Genetic Algorithms in Search, Optimization, and Machine Learning
,”
Choice Rev. Online
,
27
(
2
), p.
27
.
43.
Mitchell
,
M.
,
1998
,
An Introduction to Genetic Algorithms
,
The MIT Press
,
Cambridge, MA
.
44.
Yadav
,
R. K.
,
2020
, “
PSO-GA Based Hybrid With Adam Optimization for ANN Training With Application in Medical Diagnosis
,”
Cogn. Syst. Res.
,
64
, pp.
191
199
.
45.
Miller
,
B. L.
, and
Goldberg
,
D. E.
,
1995
, “
Genetic Algorithms, Tournament Selection, and the Effects of Noise
,”
Complex Syst.
,
9
(
3
), pp.
193
212
.
46.
Pandey
,
R. K.
,
Kumar
,
A.
, and
Mandal
,
A.
,
2021
, “
A Robust Deep Structured Prediction Model for Petroleum Reservoir Characterization Using Pressure Transient Test Data
,”
Pet. Res.
,
1
16
.
You do not currently have access to this content.