Abstract

The pressurized fluidized bed technology is recently shown to be a most promising technology for energy conversion and carbon capture. In the present work, two-phase flow characteristics of a laboratory-scale bubbling fluidized bed (BFB) system have been examined numerically under pressurized cold flow conditions. The BFB hydrodynamics is presented by axial pressure distributions and radial particle volume fractions. Moreover, the influence of drag models on minimum fluidization and bubble formation is studied using two different drag models, namely Wen-Yu/Ergun and EMMS–Yang, at both atmospheric and elevated pressure conditions. The numerical results are validated with a series of pressure drop and axial pressure measurements conducted at three different pressure conditions. The experimentally observed minimum fluidization velocity results are also compared with the theoretical correlations found in the literature. Good agreement has been found between experiments and numerical predictions.

References

1.
International Energy Agency
,
2012
, “
World Energy Outlook
Paris, France
,
45
.
2.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1991
,
Fluidization Engineering
, 2nd ed.,
Butterworth-Heinemann
,
Woburn, MA
.
3.
Breault
,
R. W.
,
Weber
,
J.
,
Straub
,
D.
, and
Bayham
,
S.
,
2017
, “
Computational Fluid Dynamics Modeling of the Fuel Reactor in NETL’s 50 KWth Chemical Looping Facility
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042211
.
4.
Shao
,
Y.
,
Agarwal
,
R. K.
,
Wang
,
X.
, and
Jin
,
B.
,
2020
, “
Review of Computational Fluid Dynamics Studies on Chemical Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080802
.
5.
Breault
,
R. W.
,
Rowan
,
S. L.
,
Weber
,
J. M.
, and
Yang
,
J.
,
2020
, “
Effects of Riser Diameter on Solids Holdup and Particle Velocity Profiles in Circulating Fluidized Bed Riser Systems
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070902
.
6.
Li
,
L.
,
Duan
,
Y.
,
Duan
,
L.
,
Xu
,
C.
, and
Anthony
,
E. J.
,
2018
, “
Flow Characteristics in Pressurized Oxy-Fuel Fluidized Bed Under Hot Condition
,”
Int. J. Multiphase Flow
,
108
, pp.
1
10
.
7.
Wu
,
Y.
,
Liu
,
D.
,
Ma
,
J.
, and
Chen
,
X.
,
2018
, “
Effects of Gas–Solid Drag Model on Eulerian-Eulerian CFD Simulation of Coal Combustion in a Circulating Fluidized Bed
,”
Powder Technol.
, pp.
48
61
. doi.org/10.1016/j.powtec.2017.10.013
8.
Wilkinson
,
D.
,
1995
, “
Determination of Minimum Fluidization Velocity by Pressure Fluctuation Measurement
,”
Can. J. Chem. Eng.
,
73
(
4
), pp.
562
565
.
9.
Zhu
,
H.
,
Zhu
,
J.
,
Li
,
G.
, and
Li
,
F.
,
2008
, “
Detailed Measurements of Flow Structure Inside a Dense Gas-Solids Fluidized Bed
,”
Powder Technol.
,
180
(
3
), pp.
339
349
. doi.org/10.1016/j.powtec.2007.02.043
10.
Shao
,
Y.
,
Li
,
Z.
,
Zhong
,
W.
,
Bian
,
Z.
, and
Yu
,
A.
,
2020
, “
Minimum Fluidization Velocity of Particles With Different Size Distributions at Elevated Pressures and Temperatures
,”
Chem. Eng. Sci.
,
216
, p.
115555
.
11.
Feng
,
R.
,
Li
,
J.
,
Cheng
,
Z.
,
Yang
,
X.
, and
Fang
,
Y.
,
2017
, “
Influence of Particle Size Distribution on Minimum Fluidization Velocity and Bed Expansion at Elevated Pressure
,”
Powder Technol.
,
320
, pp.
27
36
.
12.
Liu
,
D.
,
Hu
,
J.
,
Song
,
J.
,
Liang
,
C.
,
Xu
,
C.
, and
Chen
,
X.
,
2020
, “
Effect of Elevated Pressure on Gas-Solid Flow Characteristics in a Circulating Fluidized Bed
,”
Powder Technol.
,
366
, pp.
470
476
.
13.
Ostermeier
,
P.
,
Vandersickel
,
A.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2019
, “
Numerical Approaches for Modeling Gas–Solid Fluidized Bed Reactors: Comparison of Models and Application to Different Technical Problems
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p. 070707.
14.
Tu
,
Q.
, and
Wang
,
H.
,
2018
, “
CPFD Study of a Full-Loop Three-Dimensional Pilot-Scale Circulating Fluidized bed Based on EMMS Drag Model
,”
Powder Technol.
,
323
, pp.
534
547
.
15.
Banerjee
,
S.
, and
Agarwal
,
R. K.
,
2015
, “
An Eulerian Approach to Computational Fluid Dynamics Simulation of a Chemical-Looping Combustion Reactor With Chemical Reactions
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042201
.
16.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization
,
Academic Press
,
Cambridge, MA
.
17.
Chen
,
C.
,
Werther
,
J.
,
Heinrich
,
S.
,
Qi
,
H.-Y.
, and
Hartge
,
E.-U.
,
2013
, “
CPFD Simulation of Circulating Fluidized bed Risers
,”
Powder Technol.
,
235
, pp.
238
247
.
18.
Liang
,
Y.
,
Zhang
,
Y.
,
Li
,
T.
, and
Lu
,
C.
,
2014
, “
A Critical Validation Study on CPFD Model in Simulating gas–Solid Bubbling Fluidized Beds
,”
Powder Technol.
,
263
, pp.
121
134
.
19.
Fotovat
,
F.
,
Abbasi
,
A.
,
Spiteri
,
R. J.
,
de Lasa
,
H.
, and
Chaouki
,
J.
,
2015
, “
A CPFD Model for a Bubbly Biomass–Sand Fluidized bed
,”
Powder Technol.
,
275
, pp.
39
50
.
20.
Liu
,
D.
,
Song
,
J.
,
Ma
,
J.
,
Chen
,
X.
, and
van Wachem
,
B.
,
2020
, “
Gas Flow Distribution and Solid Dynamics in a Thin Rectangular Pressurized Fluidized Bed Using CFD-DEM Simulation
,”
Powder Technol.
,
373
, pp.
369
383
.
21.
Dong
,
P.
,
Tu
,
Q.
,
Wang
,
H.
, and
Zhu
,
Z.
,
2020
, “
Effects of Pressure on Flow Characteristics in a Pressurized Circulating Fluidized Bed
,”
Particuology
,
59
, pp.
16
23
.
22.
Snider
,
D. M.
,
Clark
,
S. M.
, and
O’Rourke
,
P. J.
,
2011
, “
Eulerian–Lagrangian Method for Three-Dimensional Thermal Reacting Flow With Application to Coal Gasifiers
,”
Chem. Eng. Sci.
,
66
(
6
), pp.
1285
1295
.
23.
Anderson
,
T. B.
, and
Jackson
,
R.
,
1967
, “
Fluid Mechanical Description of Fluidized Beds: Equations of Motion
,”
Ind. Eng. Chem. Fund.
,
6
(
4
), pp.
527
539
.
24.
Snider
,
D. M.
,
2001
, “
An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows
,”
J. Comput. Phys.
,
170
(
2
), pp.
523
549
.
25.
Harris
,
S. E.
, and
Crighton
,
D. G.
,
1994
, “
Solitons, Solitary Waves, and Voidage Disturbances in Gas-Fluidized Beds
,”
J. Fluid Mech.
,
266
, pp.
243
276
.
26.
Wen
,
C. Y.
, and
Yu
,
Y. H.
,
1966
, “
A Generalized Method for Predicting the Minimum Fluidization Velocity
,”
AIChE J.
,
12
(
3
), pp.
610
612
.
27.
Patel
,
M.K.
,
Pericelos
,
K.
, and
Cross
,
M.
,
1993
, “
Numerical Modelling of Circulating Fluidized Beds
,”
Int. J. Comput. Fluid Dyn.
,
1
(
2
), pp.
161
176
.
28.
Gidaspow
,
D.
,
1994
,
Particle-Fluid Two-Phase Flow: The Energy-Minimization Multi-Scale Method
,
Metallurgical Industry Press
, p.
iv
.
29.
Yang
,
N.
,
Wang
,
W.
,
Ge
,
W.
,
Wang
,
L.
, and
Li
,
J.
,
2004
, “
Simulation of Heterogeneous Structure in a Circulating Fluidized-Bed Riser by Combining the Two-Fluid Model With the EMMS Approach
”, pp.
5548
5561
.
30.
Couderc
,
J. P.
,
1985
, “
Incipient Fluidization and Particulate Systems
,”
Fluidization
, pp.
1
46
.
31.
Saxena
,
S. C.
, and
Vogel
,
G. J.
,
1977
, “
The Measurement of Incipient Fluidisation Velocities in a Bed of Coarse Dolomite at Temperature and Pressure
,”
Trans. Inst. Chem. Eng.
,
55
(
3
), pp.
184
189
.
32.
Babu
,
S. P.
,
Shah
,
B.
, and
Talwalkar
,
A.
,
1978
,
AIChE Syposium Series
, Vol.
74
,
AIChE
,
NY, USA
, pp.
176
186
.
33.
Grace
,
J. B.
,
1983
,
Hydrodynamics of Liquid Drops in Immiscible Liquids
, Vol.
38
,
Ann Arbor Science
,
Ann Arbor, MI
.
34.
Chitester
,
D.C.
,
Kornosky
,
R.M.
,
Fan
,
L.S.
, and
Danko
,
J.P.
,
1984
, “
Characteristics of Fluidization at High Pressure
,”
Chem. Eng. Sci.
,
39
(
2
), pp.
253
261
.
35.
Zheng
,
Y.
,
Zhu
,
J.X.
,
Wen
,
J.
,
Martin
,
S.A.
,
Bassi
,
A. S.
, and
Margaritis
,
A.
,
1999
, “
The Axial Hydrodynamic Behavior in a Liquid Solid—Circulating Fluidized Bed
,”
Can. J. Chem. Eng.
,
77
(
2
), pp.
284
290
.
36.
Thonglimp
,
V.
,
Hiquily
,
N.
, and
Laguerie
,
C.
,
1984
, “
Vitesse Minimale de Fluidisation et Expansion des Couches Fluidiées par un gaz
,”
Powder Technol.
,
38
(
3
), pp.
233
253
.
37.
Wall
,
T. F.
,
2007
, “
Combustion Processes for Carbon Capture
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
31
47
.
You do not currently have access to this content.