Abstract

The purpose of the current study is to find out the heat transfer and pressure drop phenomena of the cooling channel with dimples and guide vane and compare the results with the no guide vane dimpled cooling channel. The first leg of the cooling channel is 490 mm, and the second leg is 460 mm. The two legs relate to the 180 deg turn region. The guide vane was inserted at the bend region of the dimpled cooling channel. The study was conducted with two different guide vanes geometry at two different orientations, i.e., U-guide vane with protrusion and depression orientation and curve-guide vane with protrusion and depression orientations both experimentally and numerically. The numerical study was performed with the large eddy simulation method. The result shows that for both stationary and rotational motion, the U-guide vane with depression experiences the highest thermal performance. The friction factor is comparatively higher for curve-guide vane with protrusion under stationary motion. However, under rotation, the curve-protrusion guide encounters the highest friction factor, which is higher compared to the no guide vane cooling channel.

References

1.
Kiml
,
R.
,
Mochizuki
,
S.
, and
Murata
,
A.
,
2001
, “
Effects of Rib Arrangements on Heat Transfer and Flow Behavior in a Rectangular Rib-Roughened Passage: Application to Cooling of Gas Turbine Blade Trailing Edge
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
4
), pp.
675
681
.
2.
Kamat
,
H.
,
Shenoy
,
B. S.
, and
Kini
,
C. R.
,
2017
, “
Effect of V-Shaped Ribs on Internal Cooling of Gas Turbine Blades
,”
J. Eng. Technol. Sci.
,
49
(
4
), pp.
520
533
.
3.
Kumar
,
S.
,
Amano
,
R. S.
, and
Lucci
,
J. M.
,
2013
, “
Numerical Simulations of Heat Transfer Distribution of a Two-Pass Square Channel With V-Rib Turbulator and Bleed Holes
,”
Heat Mass Transfer
,
49
(
8
), pp.
1141
1158
.
4.
Kumar
,
S.
, and
Amano
,
R. S.
,
2021
, “
An Investigation in the Numerical Approach to Solve the Heat Transfer Phenomenon in Gas Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080805
.
5.
Amano
,
R. S.
, and
Song
,
B.
,
2005
, “Chapter 9–Simulation of Turbulent Flow in a Duct With and Without Rotationâ Cooling Passage of Gas Turbine Blades,”
Modeling and Simulation of Turbulent Heat Transfer
,
WIT Press
,
Southampton, UK
, pp.
315
348
.
6.
Amano
,
R. S.
,
2002
, “Chapter 6–Heat Transfer Predictions of Stator/Rotor ¶Blades and Rotating Disk,”
Book Chapter in Heat Transfer in Gas Turbine Systems
,
WIT Press
,
Southampton, UK
, pp.
227
261
.
7.
Amano
,
R. S.
,
Guntur
,
K.
,
Martinez Lucci
,
J.
, and
Ashitaka
,
Y.
,
2010
, “
Study of Flow Through a Stationary Ribbed Channel for Blade Cooling
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, pp.
471
478
.
8.
Hahn
,
T.
,
Deakins
,
B.
,
Buechler
,
A.
,
Kumar
,
S.
, and
Amano
,
R. S.
,
2012
, “
Experimental Analysis of the Heat Transfer Variations Within an Internal Passage of a Typical Gas Turbine Blade Using Varied Internal Geometries
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
851
858
.
9.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2022
, “
Experimental Study on Flow Behavior and Heat Transfer Enhancement With Distinct Dimpled Gas Turbine Blade Internal Cooling Channel
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
072101
.
10.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2020
, “
Study on Heat Transfer Enhancement of Gas Turbine Blades
,”
Int. J. Energy Clean Environ.
,
21
(
2
), pp.
91
106
.
11.
Nourin
,
F.
, and
Amano
,
R. S.
,
2022
, “
Experimental and Large Eddy Simulation Study for Visualizing Complex Flow Phenomena of Gas Turbine Internal Blade Cooling Channel With No Bend
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062104
.
12.
Rao
,
Y.
,
Feng
,
Y.
,
Li
,
B.
, and
Weigand
,
B.
,
2015
, “
Experimental and Numerical Study of Heat Transfer and Flow Friction in Channels With Dimples of Different Shapes
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
3
), p.
031901
.
13.
Choi
,
E. Y.
,
Choi
,
Y. D.
, and
Kwak
,
J. S.
,
2013
, “
Effect of Dimple Configuration on Heat Transfer Coefficient in a Rib-Dimpled Channel
,”
J. Thermo Phys. Heat Transfer
,
27
(
4
), pp.
653
659
.
14.
Rao
,
Y.
,
Xu
,
Y.
, and
Wan
,
C.
,
2012
, “
An Experimental and Numerical Study of Flow and Heat Transfer in Channels With Pin Fin-Dimple and Pin Fin Arrays
,”
Exp. Therm. Fluid Sci.
,
38
, pp.
237
247
.
15.
Salem
,
A.
,
Nourin
,
F.
,
Abousabae
,
M.
, and
Amano
,
R. S.
,
2021
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-Line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012103
.
16.
Nourin
,
F. N.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Jet Impingement Cooling for Gas Turbine Blade With In-Line and Staggered Nozzle Arrays
,”
Int. J. Energy Clean Environ.
,
21
(
2
), pp.
169
182
.
17.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2023
, “
Heat Transfer Augmentation With Multiple Jet Impingement Cooling on Dimpled Surface for Gas Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022101
.
18.
Saravani
,
M. S.
,
Amano
,
R. S.
,
DiPasquale
,
N. J.
, and
Halmo
,
J. W.
,
2020
, “
Turning Guide Vane Effect on Internal Cooling of Two-Passage Channel With Parallel Ribs
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
091303
.
19.
Xie
,
G.
,
Song
,
Y.
, and
Sundén
,
B.
,
2016
, “
Computational Optimization of the Internal Cooling Passages of a Guide Vane by a Gradient-Based Algorithm
,”
Numer. Heat Transfer Part A
,
69
(
12
), pp.
1311
1331
.
20.
Schüler
,
M.
,
Zehnder
,
F.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Neumann
,
S. O.
,
2011
, “
The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021017
.
21.
Nourin
,
F. N.
,
Blum
,
B.
, and
Amano
,
R. S.
,
2022
, “
Evaluation of Heat Transfer Enhancement on Rotational Gas Turbine Blade Internal Cooling Channel With Dimpled Surface
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112105
.
22.
Amano
,
R. S.
,
1986
, “
A Numerical Study of Turbulent Axisymmetric Jets Flowing Into Closed Tubes
,”
ASME J. Energy Resour. Technol.
,
108
(
4
), pp.
286
291
.
23.
Amano
,
R. S.
, and
Sunden
,
B.
,
2014
,
Impingement Jet Cooling in Gas Turbines
,
WIT Press
,
Southampton, UK
, p.
252
.
24.
Amano
,
R. S.
,
Sunden
,
B.
, and
Brebbia
,
C.A.
,
2008
, “Advances in Gas Turbine Blade Cooling Technology,”
Advanced Computational Methods and Experiments in Heat Transfer X
,
WIT Press
,
Southampton, UK
, pp.
149
157
.
25.
Cho
,
H. H.
,
Lee
,
S. Y.
,
Won
,
J. H.
, and
Rhee
,
D. H.
,
2004
, “
Heat/Mass Transfer in a Two-Pass Rotating Rectangular Duct With and Without 70-Angled Ribs
,”
Heat Mass Transfer
,
40
(
6
), pp.
467
475
.
26.
Kim
,
K. M.
,
Lee
,
D. H.
, and
Cho
,
H. H.
,
2007
, “
Rotational Effects on Pressure Drop in Smooth and Ribbed Two-Pass Ducts
,”
J. Thermophys. Heat Transfer
,
21
(
3
), pp.
664
667
.
27.
Park
,
J. S.
,
Lee
,
D. M.
,
Lee
,
D. H.
,
Lee
,
S.
,
Kim
,
B. S.
, and
Cho
,
H. H.
,
2017
, “
Thermal Performance in a Rotating Two-Passage Channel With Various Turning Guide Vanes
,”
J. Mech. Sci. Technol.
,
31
(
7
), pp.
3581
3591
.
28.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Abbas
,
A. I.
, and
Amano
,
R. S.
,
2020
, “
Heat Transfer Evaluation for a Two-Pass Smooth Wall Channel: Stationary and Rotating Cases
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061305
.
29.
Luo
,
J.
, and
Razinsky
,
E. H.
,
2007
, “
Analysis of Turbulent Flow in 180 deg Turning Ducts With and Without Guide Vanes
,” pp.
899
908
, ASME Paper No. GT2007-28173.
30.
Schukin
,
A. V.
,
Kozlov
,
A. P.
, and
Agachev
,
R. S.
,
1995
, “
Study and Application of Hemispheric Cavities for Surface Heat Transfer Augmentation
,”
Turbo Expo: Power for Land, Sea, and Air
,
Houston, TX
,
June 5–8
, Vol. 78811, p. V004T09A034.
31.
Kesarev
,
V. S.
, and
Kozlov
,
A. P.
,
1993
, “
Convective Heat Transfer in Turbulized Flow Past a Hemispherical Cavity
,”
Heat Transfer Res.
,
25
(
2
), pp.
156
160
.
32.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
,
2004
, “
Effects of Dimple Depth on Nusselt Numbers and Friction Factors for Internal Cooling in a Channel
,”
Turbo Expo: Power for Land, Sea, and Air
,
Vienna, Austria
,
June 14–17
, Vol. 41685, pp.
989
998
.
33.
Kim
,
Y. W.
,
Arellano
,
L.
,
Vardakas
,
M.
,
Moon
,
H. K.
, and
Smith
,
K. O.
,
2003
, “
Comparison of Trip-Strip/Impingement/Dimple Cooling Concepts at High Reynolds Numbers
,”
Turbo Expo: Power for Land, Sea, and Air
,
Atlanta, GA
,
June 16–19
, Vol. 36886, pp.
703
709
.
34.
Choi
,
E. Y.
,
Choi
,
Y. D.
,
Lee
,
W. S.
,
Chung
,
J. T.
, and
Kwak
,
J. S.
,
2013
, “
Heat Transfer Augmentation Using a Rib–Dimple Compound Cooling Technique
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
435
441
.
35.
Morris
,
G. K.
,
Garimella
,
S. V.
, and
Amano
,
R. S.
,
1995
,”
Prediction of Jet Impingement Heat Transfer Using a Hybrid Wall Treatment With Different Turbulent Prandtl Number Functions
,
American Society of Mechanical Engineers
,
New York, NY,
No. CONF-951135.
36.
Amano
,
R. S.
, and
Brandt
,
H.
,
1984
, “
Numerical Study of Turbulent Axisymmetric Jets Impinging on a Flat Plate and Flowing Into an Axisymmetric Cavity
,”
ASME J. Fluids Eng.
,
106
(
4
), pp.
410
417
.
37.
Keenan
,
M.
,
Amano
,
R. S.
, and
Ou
,
S.
,
2013
, “
Study of an Impingement Cooling Jet Array for Turbine Blade Cooling With Single and Double Exit Cases
,”
Turbo Expo: Power for Land, Sea, and Air
,
San Antonio, TX
,
June 3–7
, Vol. 55140, p. V03AT12A002.
38.
Amano
,
R. S.
, and
Neusen
,
K. F.
,
1982
, “
A Numerical and Experimental Investigation of High-Velocity Jets Impinging on a Flat Plate
,”
Proceedings of the Sixth International Symposium on Jet Cutting Technology
,
Apr. 6–8
, pp.
107
122
.
39.
Amano
,
R. S.
,
2008
,
Advanced Computational Methods and Experiments in Heat Transfer X
,
WIT Press
,
Southampton, UK
, pp.
149
157
.
40.
Amano
,
R. S.
, and
Song
,
B.
,
2005
,
Modeling and Simulation of Turbulent Heat Transfer
,
WIT Press
,
Southampton, UK
, pp.
315
348
.
41.
Amano
,
R. S.
,
2002
,
Heat Transfer in Gas Turbine Systems
,
WIT Press
,
Southampton, UK
, pp.
227
261
.
42.
Amano
,
R. S.
,
Keenan
,
M.
, and
Ou
,
S.
,
2014
,
Impingement Jet Cooling in Gas Turbines
,
WIT Press
,
Southampton, UK
, pp.
33
62
.
43.
Wheeler
,
A. J.
, and
Ganji
,
A. R.
,
2010
,
Introduction to Engineering Experimentation
, 3rd ed.,
Pearson Higher Education
,
Hoboken, NJ
.
44.
Haiping
,
C.
,
Dalin
,
Z.
, and
Taiping
,
H.
,
1997
, “
Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: The Effect of the Relative Position of the Jet Hole to the Ribs
,”
Turbo Expo: Power for Land, Sea, and Air
,
Orlando, FL
,
June 2–5
, Vol. 78705, p. V003T09A067.
You do not currently have access to this content.