Abstract

The high temperature in the horizontal section and bottom of a horizontal well has a significant impact on the performance of mud and the safety of drilling equipment. The high bottomhole temperature is lowered often by reducing the inlet temperature. To explore how the inlet temperature impacts the bottomhole temperature during horizontal well drilling, a computational model for transient temperature during horizontal well drilling was established in this paper. Finite difference approach was utilized for the model discretization, while the relaxation iteration technique was adopted for the model resolution. The influence of inlet temperature on bottomhole temperature was analyzed during alterations of inlet flowrate and horizontal section length. On the basis of the obtained results, the impact of inlet temperature on bottomhole temperature decreases as the horizontal section length increases. On the premise that the horizontal section is long enough, lowering the inlet temperature exerts little impact on the bottomhole temperature fluctuation. As the inlet flowrate declines, the influence of inlet temperature on bottomhole temperature decreases. In addition, with the inlet flowrate being small enough, lowering inlet temperature rarely impacts the bottomhole temperature fluctuation.

References

1.
Abbas
,
A. K.
,
Alsaba
,
M. T.
, and
Al Dushaishi
,
M. F.
,
2022
, “
Comprehensive Experimental Investigation of Hole Cleaning Performance in Horizontal Wells Including the Effects of Drill String Eccentricity, Pipe Rotation, and Cuttings Size
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
063006
.
2.
Saadeldin
,
R.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2022
, “
Intelligent Model for Predicting Downhole Vibrations Using Surface Drilling Data During Horizontal Drilling
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
083002
.
3.
Fan
,
C.
,
2017
, “
Preventive Measures of Crystallization Blockage in Deep Well Mining
,”
China Well Rock Salt
,
48
(
2
), pp.
16
19
.
4.
Ma
,
X.
, and
Ma
,
Q.
,
2017
, “
Study on Design of Mud Cooling System for Natural Gas Hydrate Drilling
,”
China Petrol. Machin.
,
45
(
10
), pp.
27
31
.
5.
Zhang
,
Z.
,
Xiong
,
Y.
,
Pu
,
H.
, and
Sun
,
Z.
,
2020
, “
Effect of the Variations of Thermophysical Properties of Drilling Fluids With Temperature on Wellbore Temperature Calculation During Drilling
,”
Energy
,
214
(
7
), p.
119055
.
6.
Huang
,
X.
,
Qi
,
Z.
,
Zhang
,
H.
,
Yan
,
W.
,
Yan
,
C.
,
Li
,
S.
, and
Li
,
J.
,
2021
, “
Effect of Stress-Sensitive Permeability and Porosity on Production Performance in Water-Soluble Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112902
.
7.
Luo
,
H.
,
Li
,
H.
,
Li
,
Y.
,
Lu
,
Y.
, and
Tan
,
Y.
,
2018
, “
Investigation of Temperature Behavior for Multi-Fractured Horizontal Well in low-Permeability gas Reservoir
,”
Int. J. Heat Mass Transfer
,
127
, pp.
375
395
.
8.
Li
,
J.
,
Guo
,
B.
, and
Li
,
B.
,
2015
, “
A Closed Form Mathematical Model for Predicting Gas Temperature in Gas-Drilling Unconventional Tight Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
284
289
.
9.
Zhao
,
J.
,
Sun
,
Y.
, and
Guo
,
W.
,
2010
, “
Current Situation of Drilling Mud Cooling Technology and Research on a New Type of Drilling Mud Cooling System
,”
Explor. Eng. Rock Soil Drill. Tunnel.
,
37
(
9
), pp.
1
5
.
10.
Gao
,
H.
, and
Liu
,
H.
,
2007
, “
Concept Design for Drilling Fluid Cooling System
,”
Oil Field Equip.
,
06
, pp.
31
32
.
11.
Seiji
,
S.
,
2000
, “
Frontier Geothermal Drilling Operations Succeed at 500 °C BHST
,”
SPE Drill. Complet.
,
15
(
3
), pp.
152
161
.
12.
Wu
,
J.
, and
Yun
,
X.
,
2003
, “
Development and Benefit Evaluation of Geothermal Energy
,”
J. Changchun Inst. Technol.
,
4
(
1
), pp.
31
34
.
13.
Ma
,
Q.
,
2016
, “
Discussion on Drilling Fluid Cooling Technology and Equipment
,”
China Petrol. Mach.
,
44
(
10
), pp.
42
46
.
14.
Li
,
Y.
,
Wang
,
B.
,
Dong
,
H.
,
Guo
,
Z.
, and
Chen
,
Z.
,
2020
, “
Design and Key Parameter Calculation of Surface Drilling Fluid Cooling System
,”
Sino-Global Energy
,
25
(
S1
), pp.
117
122
.
15.
Lee
,
M. W.
, and
Collett
,
T. S.
,
1999
, “
Amount of Gas Hydrate Estimated From Compressional-and Shear-Wave Velocities at the JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well
,” Bulletin of the Geological Survey of Canada, pp.
313
322
.
16.
Vrielink
,
H.
,
Bradford
,
J. S.
, and
Basarab
,
L.
,
2008
,
Successful Application of Casing-While-Drilling Technology in a Canadian Arctic Permafrost Application
, IADC/SPE 111806.
17.
Hunter
,
R. B.
,
Digert
,
S. A.
,
Boswell
,
R.
, and
Collett
,
T. S.
,
2008
.
Alaska Gas Hydrate Research and Stratigraphic Test Preliminary Results
, Arctic Energy Summit, 3.
18.
Zhang
,
Y.
,
Sun
,
J.
,
Jia
,
Z.
,
Wang
,
H.
, and
Liu
,
X.
,
2009
, “
Research on and Application of The Gas Hydrates Drilling Techniques in Permafrost Land in China
,”
Explor. Eng. Rock Soil Drill.Tunnel.
,
36
(
S1
), pp.
22
28
.
19.
Yang
,
X.
,
Li
,
S.
,
Yan
,
J.
,
Lin
,
Y.
, and
Wang
,
X.
,
2014
, “
Temperature Pattern Modelling and Calculation and Analysis of ECD for Horizontal Wellbore
,”
Drill. Fluid Complet. Fluid
,
31
(
5
), pp.
63
66
.
20.
Li
,
M.
,
Liu
,
G.
,
Li
,
J.
,
Zhang
,
T.
, and
He
,
M.
,
2015
, “
Thermal Performance Analysis of Drilling Horizontal Wells in High Temperature Formations
,”
Appl. Therm. Eng.
,
78
, pp.
217
227
.
21.
Zhang
,
Z.
,
Xiong
,
Y.
, and
Guo
,
F.
,
2018
, “
Analysis of Wellbore Temperature Distribution and Influencing Factors During Drilling Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092901
.
22.
Alizadeh
,
R.
,
Abad J
,
M. N.
,
Fattahi
,
A.
,
Mohebbi
,
M. R.
,
Doranehgard
,
M. H.
,
Li
,
L. K. B.
,
Alhajri
,
E.
, and
Karimi
,
N.
,
2021
, “
A Machine Learning Approach to Predicting the Heat Convection and Thermodynamics of an External Flow of Hybrid Nanofluid
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
070908
.
23.
Zhi
,
C.
, and
Song X
,
G.
,
2011
, “
Full Transient Analysis of Heat Transfer During Drilling Fluid Circulation in Deep-Water Wells
,”
Acta Pet. Sin
,
32
(
4
), pp.
704
708
.
24.
Yang
,
J.
,
Liu
,
S.
,
Wang
,
H.
,
Zhou
,
X.
,
Song
,
Y.
,
Xie
,
R.
,
Zhang
,
Z.
,
Yin
,
Q.
, and
Xu
,
F.
,
2022
, “
A Novel Method for Fracture Pressure Prediction in Shallow Formation During Deep-Water Drilling
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
033005
.
25.
Kamel
,
M. A.
,
Elkatatny
,
S.
,
Mysorewala
,
M. F.
,
Al-Majed
,
A.
, and
Elshafei
,
M.
,
2018
, “
Adaptive and Real-Time Optimal Control of Stick–Slip and Bit Wear in Autonomous Rotary Steerable Drilling
,”
ASME J. Energy Resour. Technol
,
140
(
3
), p.
032908
.
26.
Zhang
,
Z.
,
Xiong
,
Y.
,
Mao
,
L.
,
Lu
,
J.
,
Wang
,
M.
, and
Peng
,
G.
,
2019
, “
Transient Temperature Prediction Models of Wellbore and Formation in Well-Kick Condition During Circulation Stage
,”
J. Petrol. Sci. Eng.
,
175
, pp.
266
279
.
27.
Gao
,
L.
,
2018
, “
Comparative Study on Numerical Solutions of Partial Differential Equations
,”
Sci. Tech. Develop. Ent.
,
02
, pp.
195
196
.
28.
Abdelhafiz
,
M. M.
,
Hegele
,
L. A.
, Jr.
, and
Oppelt
,
J. F.
,
2021
, “
Temperature Modeling for Wellbore Circulation and Shut-In With Application in Vertical Geothermal Wells
,”
J. Petrol. Sci. Eng.
,
204
, p.
108660
.
29.
Chen
,
P.
,
Sun
,
J.
,
Lin
,
C.
, and
Zhou
,
W.
,
2021
, “
Application of the Finite Volume Method for Geomechanics Calculation and Analysis on Temperature Dependent Poromechanical Stress and Displacement Fields in Enhanced Geothermal System
,”
Geothermics
,
95
, pp.
102138
.
30.
Huang
,
Z. L.
, and
Zhang
,
L. Q.
,
2008
, “
Stationary Solutions of High Dimensional Reduced FPK Equation Using Both Finite Difference Method and Successive Over-Relaxation Method
,”
Chin. J. Comput. Mech.
,
25
(
2
), pp.
177
182
.
31.
Zhang
,
Z.
,
Xiong
,
Y.
,
Gao
,
Y.
,
Liu
,
L.
,
Wang
,
M.
, and
Peng
,
G.
,
2018
, “
Wellbore Temperature Distribution During Circulation Stage When Well-Kick Occurs in a Continuous Formation From the Bottom-Hole
,”
Energy
,
164
, pp.
964
977
.
32.
Marshall
,
D. W.
, and
Bentsen
,
R. G.
,
1982
, “
A Computer Model to Determine the Temperature Distributions in a Wellbore
,”
J. Can. Petrol. Technol.
,
21
(
1
), pp.
63
75
.
You do not currently have access to this content.