Abstract

The combustion characteristics of oxygen-enriched air–methane (i.e., O2/N2/CH4) flames in a premixed mode are investigated using both experimentally and numerically under atmospheric conditions for emissions reduction purposes. The investigation is carried out using a gas turbine model combustor equipped with a multihole burner that mimics gas turbine micromixer burners. The resulting flame is of jet type, and the velocity of the jet is kept at 5.2 m/s for all the considered flames. Models used in the numerical study include large eddy simulation, discrete ordinate, and partially premixed combustion for turbulence, radiation, and species models, respectively. The numerical results are validated, and a suitable agreement is achieved with experimental data. The results indicated that the temperature distribution, shape, and size of O2/N2/CH4 flames are predominantly controlled by adiabatic flame temperature (Tad). However, the oxygen fraction, rather than Tad, is responsible for the reaction progress. The emission of NO, CO, and CO2 increases with an increase in oxygen fraction, and the product formation in O2/N2/CH4 flames is less compared to their oxy-fuel (i.e., O2/CO2/CH4) counterparts, because N2 is mostly inert, compared to CO2. The latter participates significantly in flame reactions, which increases the rate of product formation in O2/CO2/CH4 flames.

References

1.
Shao
,
Y.
,
Agarwal
,
R. K.
,
Wang
,
X.
, and
Jin
,
B.
,
2023
, “
Study of Flow Patterns in a Moving Bed Reactor for Chemical Looping Combustion Based on Machine Learning Methods
,”
ASME J. Energy Resour. Technol.
,
145
(
6
), p.
062302
.
2.
Demirci
,
A.
,
Emre Doğan
,
H.
,
Akın Kutlar
,
O.
,
Cihan
,
Ö
, and
Arslan
,
H.
,
2023
, “
Investigation of Burn Parameters and Cyclic Variations of a Spark Ignition Engine With Different Combustion Chambers
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
052301
.
3.
Gore
,
M.
,
Nonavinakere Vinod
,
K.
, and
Fang
,
T.
,
2023
, “
Experimental Investigation of Gaseous Mixtures of Ethane, Methane, and Carbon Dioxide as an Alternative to Conventional Fuel in Spark Ignition Engines
,”
ASME J. Energy Resour. Technol.
,
145
(
3
), p.
032301
.
4.
Baukal
,
C. E.
, Jr.
,
2013
,
Oxygen-Enhanced Combustion
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
5.
Cheong
,
K. P.
,
Li
,
P.
,
Wang
,
F.
, and
Mi
,
J.
,
2017
, “
Emissions of NO and CO From Counterflow Combustion of CH4 Under MILD and Oxyfuel Conditions
,”
Energy
,
124
, pp.
652
664
.
6.
Sharma
,
S.
,
Chowdhury
,
A.
, and
Kumar
,
S.
,
2020
, “
A Novel air Injection Scheme to Achieve MILD Combustion in a Can-Type Gas Turbine Combustor
,”
Energy
,
194
, p.
116819
.
7.
Chitgarha
,
F.
, and
Mardani
,
A.
,
2018
, “
Assessment of Steady and Unsteady Flamelet Models for MILD Combustion Modeling
,”
Int. J. Hydrogen Energy
,
43
(
32
), pp.
15551
15563
.
8.
Li
,
P. F.
,
Mi
,
J. C.
,
Dally
,
B. B.
,
Wang
,
F. F.
,
Wang
,
L.
,
Liu
,
Z. H.
,
Chen
,
S.
, and
Zheng
,
C. G.
,
2011
, “
Progress and Recent Trend in MILD Combustion
,”
Sci. China Technol. Sci.
,
54
(
2
), pp.
255
269
.
9.
Said
,
S. A.
,
Aliyu
,
M.
,
Nemitallah
,
M. A.
,
Habib
,
M. A.
, and
Mansir
,
I. B.
,
2018
, “
Experimental Investigation of the Stability of a Turbulent Diffusion Flame in a Gas Turbine Combustor
,”
Energy
,
157
, pp.
904
913
.
10.
Zan
,
H.
,
Chen
,
X.
,
Zhong
,
W.
,
Ma
,
J.
,
Liu
,
D.
,
Lian
,
G.
,
Geng
,
P.
, and
Liang
,
C.
,
2022
, “
Coal Combustion Emissions and Ash Formation Characteristics During Oxy-Fuel Combustion in a 100 KWth Pressurized Circulating Fluidized Bed
,”
Fuel Process. Technol.
,
228
, p.
107140
.
11.
Wu
,
K.-K.
,
Chang
,
Y.-C.
,
Chen
,
C.-H.
, and
Chen
,
Y.-D.
,
2010
, “
High-Efficiency Combustion of Natural Gas With 21–30% Oxygen-Enriched Air
,”
Fuel
,
89
(
9
), pp.
2455
2462
.
12.
Zhang
,
K.
,
Hu
,
G.
,
Liao
,
S.
,
Zuo
,
Z.
,
Li
,
H.
,
Cheng
,
Q.
, and
Xiang
,
C.
,
2016
, “
Numerical Study on the Effects of Oxygen Enrichment on Methane/Air Flames
,”
Fuel
,
176
, pp.
93
101
.
13.
Vandel
,
A.
,
Chica Cano
,
J. P.
,
de Persis
,
S.
, and
Cabot
,
G.
,
2022
, “
Study of the Influence of Water Vapour and Carbon Dioxide Dilution on Pollutants Emitted by Swirled Methane/Oxygen-Enriched Air Flames
,”
Exp. Therm. Fluid Sci.
,
130
, p.
110483
.
14.
Engin
,
B.
,
Kayahan
,
U.
, and
Atakül
,
H.
,
2020
, “
A Comparative Study on the Air, the Oxygen-Enriched Air and the Oxy-Fuel Combustion of Lignites in CFB
,”
Energy
,
196
, p.
117021
.
15.
Xu
,
S.
,
Xie
,
Y.
,
Huang
,
P.
,
Ren
,
H.
,
Tu
,
Y.
, and
Liu
,
H.
,
2021
, “
Nonpremixed Air/Oxygen Jet Burner to Improve Moderate or Intense Low-Oxygen Dilution Combustion Characteristics in Oxygen-Enriched Conditions
,”
Energy Fuels
,
35
(
11
), pp.
9609
9622
.
16.
Miao
,
M.
,
Deng
,
B.
,
Kong
,
H.
,
Yang
,
H.
,
Lyu
,
J.
,
Jiang
,
X.
, and
Zhang
,
M.
,
2021
, “
Effects of Volatile Matter and Oxygen Concentration on Combustion Characteristics of Coal in an Oxygen-Enriched Fluidized Bed
,”
Energy
,
220
, p.
119778
.
17.
Fordoei
,
E. E.
,
Mazaheri
,
K.
, and
Mohammadpour
,
A.
,
2021
, “
Numerical Study on the Heat Transfer Characteristics, Flame Structure, and Pollutants Emission in the MILD Methane-Air, Oxygen-Enriched and Oxy-Methane Combustion
,”
Energy
,
218
, p.
119524
.
18.
Nemitallah
,
M. A.
,
Mansir
,
I. B.
,
Haque
,
M. A.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2023
, “
Effects of Adiabatic Flame Temperature on Premixed Combustion Stability and Emission Characteristics of Swirl-Stabilized Oxy-Methane Flames
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022302
.
19.
Nemitallah
,
M. A.
,
Elzayed
,
M. S.
,
Alshadidi
,
A.
,
Abualkhair
,
M.
,
Abdelhafez
,
A.
,
Alzahrani
,
F. M.
, and
Abdul Jameel
,
A. G.
,
2023
, “
Stratified Flames in Dual Annular Counter-Rotating Swirl Burner for Wider Operability Gas Turbines
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
012305
.
20.
Nemitallah
,
M. A.
,
Aldawood
,
H.
,
Abdelhafez
,
A.
,
Alquaity
,
A.
,
Jameel
,
A. G. A.
, and
Aliyu
,
M.
,
2022
, “
Flow/Flame and Emissions Fields of Premixed Oxy-Methane Stratified Flames in a Dual Annular Counter-Rotating Swirl Burner
,”
Int. J. Thermofluids
,
15
, p.
100185
.
21.
Aliyu
,
M.
,
Nemitallah
,
M. A.
,
Said
,
S. A. M.
,
Abdelhafez
,
A.
,
Mansir
,
I. B.
, and
Habib
,
M. A.
,
2022
, “
Role of Adiabatic Flame Temperature on Controlling Operability of a Micromixer-Based Gas Turbine Combustor Holding Premixed Oxy-Flames for Carbon Capture
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102307
.
22.
Aliyu
,
M.
,
Abdelhafez
,
A.
,
Said
,
S. A. M.
,
Habib
,
M. A.
,
Nemitallah
,
M. A.
, and
Mansir
,
I. B.
,
2019
, “
Characteristics of Oxyfuel Combustion in Lean-Premixed Multihole Burners
,”
Energy Fuels
,
33
(
11
), pp.
11948
11958
.
23.
Aliyu
,
M.
,
Abdelhafez
,
A.
,
Nemitallah
,
M. A.
,
Said
,
S. A. M.
, and
Habib
,
M. A.
,
2022
, “
Effects of Adiabatic Flame Temperature on Flames’ Characteristics in a Gas-Turbine Combustor
,”
Energy
,
243
, p.
123077
.
24.
Poinsot
,
T.
, and
Veynante
,
D.
,
20115
,
Theoretical and Numerical Combustion
, 2nd ed.
25.
Pitsch
,
H.
,
2006
, “
Large-Eddy Simulation of Turbulent Combustion
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
453
482
.
26.
Knudsen
,
E.
,
Kim
,
S. H.
, and
Pitsch
,
H.
,
2010
, “
An Analysis of Premixed Flamelet Models for Large Eddy Simulation of Turbulent Combustion
,”
Phys. Fluids
,
22
(
11
), p.
115109
.
27.
Janicka
,
J.
, and
Sadiki
,
A.
,
2005
, “
Large Eddy Simulation of Turbulent Combustion Systems
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
537
547
.
28.
Vicquelin
,
R.
,
Fiorina
,
B.
,
Darabiha
,
N.
,
Gicquel
,
O.
, and
Veynante
,
D.
,
2009
, “
Coupling Tabulated Chemistry With Large Eddy Simulation of Turbulent Reactive Flows
,”
C.R. Mec.
,
337
(
6–7
), pp.
329
339
.
29.
Lecocq
,
G.
,
Richard
,
S.
,
Colin
,
O.
, and
Vervisch
,
L.
,
2011
, “
Hybrid Presumed pdf and Flame Surface Density Approaches for Large-Eddy Simulation of Premixed Turbulent Combustion Part 1 : Formalism and Simulation of a Quasi-Steady Burner
,”
Combust. Flame
,
158
(
6
), pp.
1201
1214
.
30.
Breussin
,
F.
,
Lallemant
,
N.
, and
Weber
,
R.
,
2000
, “
Computing of Oxy-Natural Gas Flames Using Both a Global Combustion Scheme and a Chemical Equilibrium Procedure
,”
Combust. Sci. Technol.
,
160
(
1
), pp.
369
397
.
31.
Chakraborty
,
S.
,
Chakraborty
,
N.
,
Kumar
,
P.
, and
Dutta
,
P.
,
2003
, “
Studies on Turbulent Momentum, Heat and Species Transport During Binary Alloy Solidification in a Top-Cooled Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
46
(
7
), pp.
1115
1137
.
32.
Mohamed Ibrahim
,
N. H.
,
Udayakumar
,
M.
,
Balasubramanian
,
D.
,
Tran
,
V. D.
,
Truong
,
T. H.
, and
Nguyen
,
V. N.
,
2023
, “
Large Eddy Simulation Studies on Effects of Soot Productivity in a Momentum Dominated Strained Diffusion Jet Flames
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
042302
.
33.
ANSYS
,
2013
,
ANSYS Fluent Theory Guide
,
ANSYS, Inc.
,
Canonsburg, PA
.
34.
Chen
,
L.
, and
Ghoniem
,
A. F.
,
2012
, “
Simulation of Oxy-Coal Combustion in a 100 KWth Test Facility Using RANS and LES: A Validation Study
,”
Energy Fuels
,
26
(
8
), pp.
4783
4798
.
35.
Porter
,
R.
,
Liu
,
F.
,
Pourkashanian
,
M.
,
Williams
,
A.
, and
Smith
,
D.
,
2010
, “
Evaluation of Solution Methods for Radiative Heat Transfer in Gaseous Oxy-Fuel Combustion Environments
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
14
), pp.
2084
2094
.
36.
Aliyu
,
M.
,
Nemitallah
,
M. A.
,
Said
,
S. A.
, and
Habib
,
M. A.
,
2016
, “
Characteristics of H2-Enriched CH4-O2 Diffusion Flames in a Swirl-Stabilized Gas Turbine Combustor: Experimental and Numerical Study
,”
Int. J. Hydrogen Energy
,
41
(
44
), pp.
20418
20432
.
37.
Sun
,
L.
,
Sun
,
R.
,
Yan
,
Y.
,
Zhang
,
Z.
,
Ke
,
W.
, and
Wu
,
J.
,
2022
, “
Bluff-Body MILD Combustion of Large-Proportion Semicoke-Blend Under Various Secondary Air Velocities
,”
Fuel
,
320
, p.
123908
.
38.
Rajhi
,
M. A.
,
Ben-Mansour
,
R.
,
Habib
,
M. A.
,
Nemitallah
,
M. A.
, and
Andersson
,
K.
,
2014
, “
Evaluation of Gas Radiation Models in CFD Modeling of Oxy-Combustion
,”
Energy Convers. Manag.
,
81
, pp.
83
97
.
39.
Sakib
,
A. H. M. N.
,
Farokhi
,
M.
, and
Birouk
,
M.
,
2023
, “
Evaluation of Flamelet-Based Partially Premixed Combustion Models for Simulating the Gas Phase Combustion of a Grate Firing Biomass Furnace
,”
Fuel
,
333
, p.
126343
.
40.
Xue
,
H.
,
Ho
,
J. C.
, and
Cheng
,
Y. M.
,
2001
, “
Comparison of Different Combustion Models in Enclosure Fire Simulation
,”
Fire Saf. J.
,
36
(
1
), pp.
37
54
.
41.
Jones
,
W. P.
, and
Whitelaw
,
J. H.
,
1982
, “
Calculation Methods for Reacting Turbulent Flows: A Review
,”
Combust. Flame
,
48
, pp.
1
26
.
42.
Ziniont
,
V.
,
Polifke
,
W.
,
Bettelini
,
M.
, and
Weisenstein
,
W.
,
1997
, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
,” ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
,
June 2–5
, pp.
1
10
.
43.
Zimont
,
V. L.
,
1979
, “
Theory of Turbulent Combustion of a Homogeneous Fuel Mixture at High Reynolds Numbers
,”
Combust., Explos. Shock Waves
,
15
(
3
), pp.
305
311
.
44.
Gaitonde
,
U.
,
2008
,
Quality Criteria for Large Eddy Simulation
,
School of MACE
,
Manchester, UK
.
45.
Zheng
,
C.
, and
Liu
,
Z.
,
2018
,
Oxy-Fuel Combustion Fundamentals, Theory and Practice
,
Academic Press
,
Cambridge, MA
.
You do not currently have access to this content.