Abstract

Based on industrial computed tomography (CT), the whole core sandy conglomerate is scanned with a resolution of 0.5 mm/voxel, and the representative debris region and filling region subsample is selected to be scanned with a resolution of 15 µm/voxel using micro-CT. Then, four regions of the whole core sandy conglomerate image are segmented with the multi-threshold segmentation algorithm including macro pore, debris, filling, and gravel regions, while binary segmentation is performed on the debris and filling subsamples to segment the debris pores and filling pores respectively. Finally, the multi-scale and multi-region pore network model of the sandy conglomerate was constructed by the integration method to analyze the different types of pore characteristics. It can be found that the integrated sandy conglomerate model can reflect the structural characteristics of macro pore, debris pore, and filling pore at the same time. Meanwhile, the porosity and permeability of the integrated sandy conglomerate model are calculated and they are basically consistent with that of lab test results, which greatly increase the accuracy of the multi-scale multi-region pore network model.

References

1.
Fan
,
Q.
,
2016
,
Study on Pore Structure of Tight Sandy Conglomerate Formation
,
Southwest Petroleum University
,
Chengdu, China
.
2.
Liang
,
Y.
,
Zhang
,
S.
,
Ye
,
Y.
,
Han
,
X.
, and
Duan
,
P.
,
2011
, “
Application of Computed Tomography Scanning Technology in Low-Permeability Sandystone Core Test
,”
Oil Drill. Prod. Technol.
,
33
(
2
), pp.
98
101
.
3.
Zhang
,
S.
,
Chen
,
Y.
, and
Hou
,
J.
,
2006
, “
Three Dimensional Visualization for CT Tomographic Image of Microscopic Flow Law of Rock Pore
,”
J. Oil Gas Technol.
,
28
(
004
), pp.
102
106
.
4.
Guo
,
Y.
,
Zhang
,
L.
,
Sun
,
H.
,
Yang
,
Y.
,
Xu
,
Z.
,
Bao
,
B.
, and
Yao
,
J.
,
2021
, “
The Simulation of Liquid Flow in the Pore Network Model of Nanoporous Media
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
033006
.
5.
Zhang
,
S. H.
,
Chen
,
Y.
,
Hou
,
J.
, and
Shi
,
X. L.
,
2007
, “
Image Processing for CT Microscopic Core Flooding Experiments
,”
Pet. Geol. Oilfield Dev. Daqing
,
26
(
1
), pp.
10
12
.
6.
Li
,
J.
,
Gao
,
Y.
,
Jiang
,
H.
,
Liu
,
Y.
, and
Dong
,
H.
,
2018
, “
Pore-Scale Imaging of the Oil Cluster Dynamic During Drainage and Imbibition Using In Situ X-ray Microtomography
,”
Geofluids
,
2018
, pp.
1
13
.
7.
Li
,
S.
,
Li
,
S.
, and
Pang
,
W.
,
2020
, “
Description of Gas Hydrate Using Digital Core Technology
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062901
.
8.
Li
,
B.
,
Nie
,
X.
,
Cai
,
J.
,
Zhou
,
X.
,
Wang
,
C.
, and
Han
,
D.
,
2022
, “
U-Net Model for Multi-Component Digital Rock Modeling of Shales Based on CT and QEMSCAN Images
,”
J. Pet. Sci. Eng.
,
216
, p.
110734
.
9.
Yang
,
Y.
,
Yang
,
H.
,
Tao
,
L.
,
Yao
,
J.
,
Wang
,
W.
,
Zhang
,
K.
, and
Luquot
,
L.
,
2019
, “
Microscopic Determination of Remaining Oil Distribution in Sandstones With Different Permeability Scales Using Computed Tomography Scanning
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092903
.
10.
Gao
,
Y.
,
Lin
,
Q.
, and
Bijeljic
,
B.
,
2017
, “
X-ray Microtomography of Intermittency in Multiphase Flow at Steady State Using a Differential Imaging Method
,”
Water Resour. Res.
,
53
(
12
), pp.
10274
10292
.
11.
Wu
,
T.
,
Li
,
X.
,
Zhao
,
J.
, and
Zhang
,
D.
,
2017
, “
Multiscale Pore Structure and Its Effect on Gas Transport in Organic-Rich Shale
,”
Water Resour. Res.
,
53
(
7
), pp.
5438
5450
.
12.
Saif
,
T.
,
Lin
,
Q.
,
Butcher
,
A. R.
,
Bijeljic
,
B.
, and
Blunt
,
M. J.
,
2017
, “
Multi-Scale Multi-Dimensional Microstructure Imaging of Oil Shale Pyrolysis Using X-ray Micro-Tomography, Automated Ultra-High Resolution SEM, MAPS Mineralogy and FIB-SEM
,”
Appl. Energy
,
202
, pp.
628
647
.
13.
Alafnan
,
S.
, and
Yucel Akkutlu
,
I.
,
2020
, “
The Transport Mechanisms and Dynamics of Shale Via Multiscale Multiphysics Pore Network Modeling
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
093003
.
14.
de Vries
,
E. T.
,
Raoof
,
A.
, and
van Genuchten
,
M. T.
,
2017
, “
Multiscale Modelling of Dual-Porosity Porous Media: A Computational Pore-Scale Study for Flow and Solute Transport
,”
Adv. Water Resour.
,
105
, pp.
82
95
.
15.
Lin
,
W.
,
Wu
,
Z.
,
Li
,
X.
,
Yang
,
Z.
,
Hu
,
M.
,
Han
,
D.
,
Wang
,
C.
, and
Zhang
,
J.
,
2022
, “
Digital Characterization and Fractal Quantification of the Pore Structures of Tight Sandstone at Multiple Scales
,”
J. Pet. Explor. Prod. Technol.
,
12
(
9
), pp.
2565
2575
.
16.
Lin
,
W.
,
Li
,
X.
,
Yang
,
Z.
,
Xiong
,
S.
,
Luo
,
Y.
, and
Zhang
,
X.
,
2020
, “
Modeling of 3D Rock Porous Media by Combining X-ray CT and Markov Chain Monte Carlo
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
013001
.
17.
Wu
,
Y.
,
Tahmasebi
,
P.
,
Lin
,
C.
,
Ren
,
L.
, and
Dong
,
C.
,
2019
, “
Multiscale Modeling of Shale Samples Based on Low- and High-Resolution Images
,”
Mar. Petrol. Geol.
,
109
, pp.
9
21
.
18.
Ji
,
L.
,
Lin
,
M.
,
Cao
,
G.
, and
Jiang
,
W.
,
2019
, “
A Multiscale Reconstructing Method for Shale Based on SEM Image and Experiment Data
,”
J. Pet. Sci. Eng.
,
179
, pp.
586
599
.
19.
Yao
,
J.
,
Wang
,
C.
,
Yang
,
Y.
, and
Yan
,
X.
,
2013
, “
A Stochastic Upscaling Analysis for Carbonate Media
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
022901
.
20.
Jiang
,
Z.
,
Van Dijke
,
M.
,
Sorbie
,
K. S.
, and
Couples
,
G. D.
,
2013
, “
Representation of Multiscale Heterogeneity Via Multiscale Pore Networks
,”
Water Resour. Res.
,
49
(
9
), pp.
5437
5449
.
21.
Jiang
,
Z.
,
van Dijke
,
M. I. J.
,
Wu
,
K.
,
Couples
,
G. D.
,
Sorbie
,
K. S.
, and
Ma
,
J.
,
2012
, “
Stochastic Pore Network Generation From 3D Rock Images
,”
Transp. Porous Media
,
94
(
2
), pp.
571
593
.
22.
Bultreys
,
T.
,
Hoorebeke
,
L. V.
, and
Cnudde
,
V.
,
2015
, “
Multi-Scale, Micro-Computed Tomography-Based Pore Network Models to Simulate Drainage in Heterogeneous Rocks
,”
Adv. Water Resour.
,
78
, pp.
36
49
.
23.
Han
,
D.
,
Wang
,
H.
,
Wang
,
C.
,
Yuan
,
W.
,
Zhang
,
J.
,
Lin
,
W.
, and
Hu
,
R.
,
2021
, “
Differential Characterization of Stress Sensitivity and Its Main Control Mechanism in Deep Pore-Fracture Clastic Reservoirs
,”
Sci. Rep.
,
11
(
1
), pp.
7374
.
24.
Nie
,
X.
,
Zhang
,
C.
,
Wang
,
C.
,
Nie
,
S.
,
Zhang
,
J.
, and
Zhang
,
C.
,
2019
, “
Variable Secondary Porosity Modeling of Carbonate Rocks Based on μ-CT Images
,”
Open Geosc.
,
11
(
1
), pp.
617
626
.
25.
Zhao
,
J.
,
Zhang
,
M.
,
Wang
,
C.
,
Mao
,
Z.
, and
Zhang
,
Y.
,
2021
, “
Application of the Backpropagation Neural Network Image Segmentation Method With Genetic Algorithm Optimization in Micropores of Intersalt Shale Reservoirs
,”
ACS Omega
,
6
(
39
), pp.
25246
25257
.
26.
Andrä
,
H.
,
Combaret
,
N.
,
Dvorkin
,
J.
,
Glatt
,
E.
,
Han
,
J.
,
Kabel
,
M.
,
Keehm
,
Y.
, et al
,
2013
, “
Digital Rock Physics Benchmarks—Part I: Imaging and Segmentation
,”
Comput. Geosci.
,
50
(
1
), pp.
25
32
.
27.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Sys. Man Cyber.
,
9
(
1
), pp.
62
66
.
You do not currently have access to this content.