Abstract

The performance of thermoelectric power generators (TEGs) primarily depends on the properties of the thermoelectric materials employed. For conventional thermoelectric modules (TEM) utilizing the same material, the geometric parameters also play a significant role in determining TEM performance. As such, optimizing the geometry of TEM can lead to improved performance. In this study, TEM were modeled, designed, fabricated, and tested to investigate the effects of different geometric parameters on their performance. Numerical simulations were conducted under both constant temperature and constant flow boundary conditions, and the results were validated through experimental testing. The simulation results under constant flow boundary conditions exhibited good agreement with the experimental results. The effects of thickness, cross-sectional area, and filling ratio of thermoelectric legs on TEM performance were investigated through numerical simulations and compared with findings from previous studies. It was observed that increasing the cross-sectional area of the thermoelectric legs led to a decrease in the power output of TEM. Conversely, increasing the filling ratio effectively enhanced the TEM's performance. Furthermore, an optimal thermoelectric leg thickness was identified through the numerical simulations that could yield the maximum power output of TEM. The underlying mechanism behind this observation was explained, shedding light on why different reports have identified different optimal thicknesses. Optimizing the thermoelectric leg thickness can help maintain a high effective temperature difference and low internal resistance, which can vary based on the specific type of TEM and the thickness and thermal conductivity of the insulating substrates and copper sheets.

References

1.
Li
,
K.
,
Bian
,
H.
,
Liu
,
C.
,
Zhang
,
D.
, and
Yang
,
Y.
,
2015
, “
Comparison of Geothermal With Solar and Wind Power Generation Systems
,”
Renew. Sust. Energy Rev.
,
42
, pp.
1464
1474
.
2.
Khalil
,
H.
,
Saito
,
T.
, and
Hassan
,
H.
,
2021
, “
Comparative Study of Heat Pipes and Liquid-Cooling Systems With Thermoelectric Generators for Heat Recovery From Chimneys
,”
Int. J. Energy Res.
,
46
(
3
), pp.
1
12
.
3.
Demir
,
M. E.
, and
Dincer
,
I.
,
2017
, “
Performance Assessment of a Thermoelectric Generator Applied to Exhaust Waste Heat Recovery
,”
Appl. Therm. Eng.
,
120
, pp.
694
707
.
4.
Khan
,
A. S.
, and
Khan
,
F. U.
,
2021
, “
A Survey of Wearable Energy Harvesting Systems
,”
Int. J. Energy Res.
,
46
(
3
), pp.
1
53
.
5.
Li
,
K.
,
Garrison
,
G.
,
Zhu
,
Y.
,
Moore
,
M.
,
Liu
,
C.
,
Hepper
,
J.
,
Bandt
,
L.
,
Horne
,
R.
, and
Petty
,
S.
,
2021
, “
Thermoelectric Power Generator: Field Test at Bottle Rock Geothermal Power Plant
,”
J. Power Sources
,
485
(
2020
), p.
229266
.
6.
Maduabuchi
,
C. C.
,
Lamba
,
R.
,
Eke
,
M.
, and
Ejiogu
,
E.
,
2021
, “
Multi-Dimensional Optimization of a Concentrated Solar Thermoelectric Generator
,”
Int. J. Energy Res.
,
46
(
5
), pp.
1
12
.
7.
He
,
D.
,
Ou
,
D.
,
Gao
,
H.
, and
Jiao
,
F.
,
2021
, “
Performance Evaluation of a Thermoelectric Generator-Coupled Composite Phase Change Material for Intermittent Aerodynamic Heat Sources
,”
Int. J. Energy Res.
,
46
(
3
), pp.
1
11
.
8.
Li
,
K.
,
Garrison
,
G.
,
Moore
,
M.
,
Zhu
,
Y.
,
Liu
,
C.
,
Horne
,
R.
, and
Petty
,
S.
,
2020
, “
An Expandable Thermoelectric Power Generator and the Experimental Studies on Power Output
,”
Int. J. Heat Mass Transf.
,
160
, p.
120205
.
9.
Twaha
,
S.
,
Zhu
,
J.
,
Yan
,
Y.
, and
Li
,
B.
,
2016
, “
A Comprehensive Review of Thermoelectric Technology: Materials, Applications, Modelling and Performance Improvement
,”
Renew. Sust. Energy Rev.
,
65
, pp.
698
726
.
10.
Wang
,
X. D.
,
Huang
,
Y. X.
,
Cheng
,
C. H.
,
Ta-Wei Lin
,
D.
, and
Kang
,
C. H.
,
2012
, “
A Three-Dimensional Numerical Modeling of Thermoelectric Device With Consideration of Coupling of Temperature Field and Electric Potential Field
,”
Energy
,
47
(
1
), pp.
488
497
.
11.
Luo
,
D.
, and
Wang
,
R.
,
2021
, “
Experimental Test and Estimation of the Equivalent Thermoelectric Properties for a Thermoelectric Module
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
122102
.
12.
Erturun
,
U.
,
Erermis
,
K.
, and
Mossi
,
K.
,
2014
, “
Effect of Various Leg Geometries on Thermo-Mechanical and Power Generation Performance of Thermoelectric Devices
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
128
141
.
13.
Yusuf
,
A.
,
Bayhan
,
N.
,
Ibrahim
,
A. A.
,
Tiryaki
,
H.
, and
Ballikaya
,
S.
,
2021
, “
Geometric Optimization of Thermoelectric Generator Using Genetic Algorithm Considering Contact Resistance and Thomson Effect
,”
Int. J. Energy Res.
,
45
(
6
), pp.
9382
9395
.
14.
Oh
,
M. W.
,
Ahn
,
J. H.
,
Lee
,
J. K.
,
Kim
,
B. S.
,
Park
,
S. D.
,
Min
,
B. K.
,
Choi
,
Y. S.
,
Lee
,
H. W.
, and
Engineering
,
A. M.
,
2010
, “
Estimation of Power Generation From Thermoelectric Devices: Model Analysis and Performance Measurements
,”
Electron. Mater. Lett.
,
6
(
3
), pp.
129
134
.
15.
Dongxu
,
J.
,
Zhongbao
,
W.
,
Pou
,
J.
,
Mazzoni
,
S.
,
Rajoo
,
S.
, and
Romagnoli
,
A.
,
2019
, “
Geometry Optimization of Thermoelectric Modules: Simulation and Experimental Study
,”
Energy Convers. Manage.
,
195
, pp.
236
243
.
16.
Wang
,
L.
,
Li
,
K.
,
Zhang
,
S.
,
Liu
,
C.
,
Zhang
,
Z.
,
Chen
,
J.
, and
Gu
,
M.
,
2020
, “
Modeling the Effects of Module Size and Material Property on Thermoelectric Generator Power
,”
ACS Omega
,
5
(
46
), pp.
29844
29853
.
17.
Huang
,
Y. X.
,
Wang
,
X. D.
,
Cheng
,
C. H.
, and
Lin
,
D. T. W.
,
2013
, “
Geometry Optimization of Thermoelectric Coolers Using Simplified Conjugate-Gradient Method
,”
Energy
,
59
, pp.
689
697
.
18.
Ji
,
D.
,
Hu
,
S.
,
Feng
,
Y.
,
Qin
,
J.
,
Yin
,
Z.
,
Romagnoli
,
A.
,
Zhao
,
J.
, and
Qian
,
H.
,
2021
, “
Geometry Optimization of Solar Thermoelectric Generator Under Different Operating Conditions via Taguchi Method
,”
Energy Convers. Manage.
,
238
, p.
114158
.
19.
Liu
,
H. B.
,
Meng
,
J. H.
,
Wang
,
X. D.
, and
Chen
,
W. H.
,
2018
, “
A New Design of Solar Thermoelectric Generator With Combination of Segmented Materials and Asymmetrical Legs
,”
Energy Convers. Manage.
,
175
, pp.
11
20
.
20.
Meng
,
J.
,
Zhang
,
X.
, and
Wang
,
X.
,
2014
, “
Multi-Objective and Multi-Parameter Optimization of a Thermoelectric Generator Module
,”
Energy
,
71
, pp.
367
376
.
21.
Zhao
,
T.
,
Li
,
K.
,
Zhu
,
Y.
,
Jia
,
L.
,
Hou
,
X.
,
Wang
,
S.
, and
Kaita
,
M.
,
2021
, “
An Experimental Method for Fast Evaluating Thermoelectric Generators Using One Pair of P- And N-Type Legs
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), pp.
1
9
.
22.
Ge
,
Y.
,
Lin
,
Y.
,
He
,
Q.
,
Wang
,
W.
,
Chen
,
J.
, and
Huang
,
S. M.
,
2021
, “
Geometric Optimization of Segmented Thermoelectric Generators for Waste Heat Recovery Systems Using Genetic Algorithm
,”
Energy
,
233
, p.
121220
.
23.
Meng
,
J. H.
,
Zhang
,
X. X.
, and
Wang
,
X. D.
,
2015
, “
Characteristics Analysis and Parametric Study of a Thermoelectric Generator by Considering Variable Material Properties and Heat Losses
,”
Int. J. Heat Mass Transf.
,
80
, pp.
227
235
.
24.
Maduabuchi
,
C.
,
Singh
,
S.
,
Ozoegwu
,
C.
,
Njoku
,
H.
, and
Eke
,
M.
,
2022
, “
The Combined Impacts of Leg Geometry Configuration and Multi-Staging on the Exergetic Performance of Thermoelectric Modules in a Solar Thermoelectric Generator
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
041303
.
25.
Sahin
,
A. Z.
, and
Yilbas
,
B. S.
,
2013
, “
The Thermoelement as Thermoelectric Power Generator: Effect of Leg Geometry on the Efficiency and Power Generation
,”
Energy Convers. Manage.
,
65
, pp.
26
32
.
26.
Yilbas
,
B. S.
, and
Ali
,
H.
,
2015
, “
Thermoelectric Generator Performance Analysis: Influence of Pin Tapering on the First and Second Law Efficiencies
,”
Energy Convers. Manage.
,
100
, pp.
138
146
.
27.
Raihan Mohammad Siddique
,
A.
,
Kratz
,
F.
,
Mahmud
,
S.
, and
Van Heyst
,
B.
,
2019
, “
Energy Conversion by Nanomaterial-Based Trapezoidal-Shaped Leg of Thermoelectric Generator Considering Convection Heat Transfer Effect
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082001
.
28.
Pang
,
D.
,
Zhang
,
A.
,
Wen
,
Z.
,
Wang
,
B.
, and
Wang
,
J.
,
2022
, “
Energy Conversion Efficiency of Thermoelectric Power Generators With Cylindrical Legs
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032014
.
29.
Buchalik
,
R.
,
Nowak
,
I.
,
Rogozinski
,
K.
, and
Nowak
,
G.
,
2020
, “
Detailed Model of a Thermoelectric Generator Performance
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
021601
.
30.
Anatychuk
,
L. I.
, and
Luste
,
O. J.
,
2003
, “
Generalized Thermoelectric Thomson Relations
,”
Proceedings ICT’03. 22nd International Conference on Thermoelectrics (IEEE Cat. No. 03TH8726)
,
La Grande Motte, France
,
Aug. 17–21
, pp.
491
492
.
31.
comsol multiphysics® v. 5.4
,
2018
,
Heat Transfer Module User’s Guide
,
Stockholm, Sweden
.
32.
Ge
,
Y.
,
He
,
K.
,
Xiao
,
L.
,
Yuan
,
W.
, and
Huang
,
S. M.
,
2022
, “
Geometric Optimization for the Thermoelectric Generator With Variable Cross-Section Legs by Coupling Finite Element Method and Optimization Algorithm
,”
Renew. Energy
,
183
, pp.
294
303
.
33.
Pierce
,
R. D.
, and
Stevens
,
R. J.
,
2015
, “
Experimental Comparison of Thermoelectric Module Characterization Methods
,”
J. Electron. Mater.
,
44
(
6
), pp.
1796
1802
.
34.
Chen
,
X.
,
Yang
,
Z.
,
Yu
,
W.
, and
Wang
,
R.
,
2020
, “
Modeling and Experimental Study of a BiSbTeSe-Based Thermoelectric Module for Thermal Energy Recovery
,”
J. Electron. Mater.
,
49
(
5
), pp.
3039
3051
.
35.
Rowe
,
D. M.
, and
Min
,
G.
,
1998
, “
Evaluation of Thermoelectric Modules for Power Generation
,”
J. Power Sources
,
73
(
2
), pp.
193
198
.
36.
Chen
,
W. H.
,
Liao
,
C. Y.
,
Hung
,
C. I.
, and
Huang
,
W. L.
,
2012
, “
Experimental Study on Thermoelectric Modules for Power Generation at Various Operating Conditions
,”
Energy
,
45
(
1
), pp.
874
881
.
You do not currently have access to this content.