Abstract

Flame tip-opening in a micro-combustor with a controlled centrally slotted bluff body adversely affects the combustion characteristics, leading to reduced average combustion efficiency and exhaust gas temperature. To minimize the adverse effects of the flame tip-opening, a deflector is introduced in the micro-combustor, downstream to the bluff body, and its effect on various combustion parameters is studied. The insertion of a deflector significantly increases the exhaust gas temperatures in the central region by establishing a secondary flame root. However, sudden changes in the flow direction caused by the insertion of deflector induce a sudden expansion-compression strain on the flame front, thereby slightly reducing the temperature of the flame zones on either side of the central region. A downstream shift in the position of the deflector marginally mitigates the adverse effects of sudden expansion-compression strain on the exhaust gas temperature, as they are induced within the secondary reaction flame zones. On the other hand, the downstream shift of the deflector negatively impacts the exhaust gas temperature in the central region due to the reduced length available for near-complete combustion downstream of the secondary flame root. In conclusion, the deflector positioned farther from the outlet is found to result in better overall combustion characteristics at higher controllable flow ratios.

References

1.
Shirsat
,
V.
, and
Gupta
,
A. K.
,
2011
, “
Performance Characteristics of Methanol and Kerosene Fuelled Meso-Scale Heat-Recirculating Combustors
,”
Appl. Energy
,
88
(
12
), pp.
5069
5082
.
2.
Yang
,
W. M.
,
Chou
,
S. K.
,
Shu
,
C.
,
Xue
,
H.
,
Li
,
Z. W.
,
Li
,
D. T.
, and
Pan
,
J. F.
,
2003
, “
Microscale Combustion Research for Application to Micro Thermophotovoltaic Systems
,”
Energy Convers. Manage.
,
44
(
16
), pp.
2625
2634
.
3.
Vijayan
,
V.
, and
Gupta
,
A. K.
,
2011
, “
Thermal Performance of a Meso-Scale Liquid-Fuel Combustor
,”
Appl. Energy
,
88
(
7
), pp.
2335
2343
.
4.
Yang
,
W. M.
,
Chua
,
K. J.
,
Pan
,
J. F.
,
Jiang
,
D. Y.
, and
An
,
H.
,
2014
, “
Development of Micro-Thermophotovoltaic Power Generator With Heat Recuperation
,”
Energy Convers. Manage.
,
78
, pp.
81
87
.
5.
Milcarek
,
R. J.
,
Garrett
,
M. J.
, and
Ahn
,
J.
,
2016
, “
Micro-Tubular Flame-Assisted Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
41
(
46
), pp.
21489
21496
.
6.
Milcarek
,
R. J.
,
Nakamura
,
H.
,
Tezuka
,
T.
,
Maruta
,
K.
, and
Ahn
,
J.
,
2019
, “
Microcombustion for Micro-Tubular Flame-Assisted Fuel Cell Power and Heat Cogeneration
,”
J. Power Sources
,
413
, pp.
191
197
.
7.
Shirsat
,
V.
, and
Gupta
,
A. K.
,
2013
, “
Extinction, Discharge, and Thrust Characteristics of Methanol Fueled Meso-Scale Thrust Chamber
,”
Appl. Energy
,
103
, pp.
375
392
.
8.
Wierzbicki
,
T. A.
,
Lee
,
I. C.
, and
Gupta
,
A. K.
,
2014
, “
Performance of Synthetic Jet Fuels in a Meso-Scale Heat Recirculating Combustor
,”
Appl. Energy
,
118
, pp.
41
47
.
9.
Shirsat
,
V.
, and
Gupta
,
A. K.
,
2011
, “
A Review of Progress in Heat Recirculating Meso-Scale Combustors
,”
Appl. Energy
,
88
(
12
), pp.
4294
4309
.
10.
Vijayan
,
V.
, and
Gupta
,
A. K.
,
2010
, “
Combustion and Heat Transfer at Meso-Scale With Thermal Recuperation
,”
Appl. Energy
,
87
(
8
), pp.
2628
2639
.
11.
Vijayan
,
V.
, and
Gupta
,
A. K.
,
2010
, “
Flame Dynamics of a Meso-Scale Heat Recirculating Combustor
,”
Appl. Energy
,
87
(
12
), pp.
3718
3728
.
12.
Vijayan
,
V.
, and
Gupta
,
A.
,
2010
, “
Effect of Channel Length on Meso-Scale Spiral Combustor Performance
,”
46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Nashville, TN
,
July 25
.
13.
Jiaqiang
,
E.
,
Ding
,
J.
,
Chen
,
J.
,
Liao
,
G.
,
Zhang
,
F.
, and
Luo
,
B.
,
2021
, “
Process in Micro-Combustion and Energy Conversion of Micro Power System: A Review
,”
Energy Convers. Manage.
,
246
, p.
114664
.
14.
Wan
,
J.
, and
Fan
,
A.
,
2021
, “
Recent Progress in Flame Stabilization Technologies for Combustion-Based Micro Energy and Power Systems
,”
Fuel
,
286
, p.
119391
.
15.
Wan
,
J.
,
Yang
,
W.
,
Fan
,
A.
,
Liu
,
Y.
,
Yao
,
H.
,
Liu
,
W.
,
Du
,
Y.
, and
Zhao
,
D.
,
2014
, “
A Numerical Investigation on Combustion Characteristics of H2/air Mixture in a Micro-Combustor With Wall Cavities
,”
Int. J. Hydrogen Energy
,
39
(
15
), pp.
8138
8146
.
16.
Yan
,
Y.
,
Liu
,
Y.
,
Li
,
H.
,
Huang
,
W.
,
Chen
,
Y.
,
Li
,
L.
, and
Yang
,
Z.
,
2019
, “
Effect of Cavity Coupling Factors of Opposed Counter-Flow Microcombustor on the Methane-Fueled Catalytic Combustion Characteristics
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022202
.
17.
Li
,
J.
,
Chou
,
S. K.
,
Li
,
Z. W.
, and
Yang
,
W. M.
,
2010
, “
Experimental Investigation of Porous Media Combustion in a Planar Micro-Combustor
,”
Fuel
,
89
(
3
), pp.
708
715
.
18.
Li
,
Q.
,
Zuo
,
W.
,
Zhang
,
Y.
,
Li
,
J.
, and
He
,
Z.
,
2020
, “
Effects of Rectangular Rib on Exergy Efficiency of a Hydrogen-Fueled Micro Combustor
,”
Int. J. Hydrogen Energy
,
45
(
16
), pp.
10155
10163
.
19.
Su
,
Y.
,
Cheng
,
Q.
,
Song
,
J.
, and
Si
,
M.
,
2016
, “
Numerical Study on a Multiple-Channel Micro Combustor for a Micro-Thermophotovoltaic System
,”
Energy Convers. Manage.
,
120
, pp.
197
205
.
20.
H.
Li
,
Y.
Chen
,
Y.
Yan
,
C.
Hu
,
H.
Fan
,
S.
Feng
,
2018
, “
Numerical Study on Heat Transfer Enhanced in a Microcombustor With Staggered Cylindrical Array for Micro-Thermophotovoltaic System
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112204
.
21.
He
,
Z.
,
Yan
,
Y.
,
Feng
,
S.
,
Li
,
X.
,
Fang
,
R.
,
Ou
,
Z.
, and
Yang
,
Z.
,
2021
, “
Numerical Investigation on a Multi-channel Micro Combustor Fueled With Hydrogen for a Micro-Thermophotovoltaic System
,”
Int. J. Hydrogen Energy
,
46
(
5
), pp.
4460
4471
.
22.
Chen
,
G. B.
,
Chen
,
C. P.
,
Wu
,
C. Y.
, and
Chao
,
Y. C.
,
2007
, “
Effects of Catalytic Walls on Hydrogen/Air Combustion Inside a Micro-Tube
,”
Appl. Catal. A Gen.
,
332
(
1
), pp.
89
97
.
23.
Wierzbicki
,
T. A.
,
Lee
,
I. C.
, and
Gupta
,
A. K.
,
2014
, “
Combustion of Propane With Pt and Rh Catalysts in a Meso-Scale Heat Recirculating Combustor
,”
Appl. Energy
,
130
, pp.
350
356
.
24.
Wierzbicki
,
T. A.
,
Lee
,
I. C.
, and
Gupta
,
A. K.
,
2016
, “
Recent Advances in Catalytic Oxidation and Reformation of Jet Fuels
,”
Appl. Energy
,
165
, pp.
904
918
.
25.
Zuo
,
W.
,
Wang
,
Z.
,
Jiaqiang
,
E.
,
Li
,
Q.
,
Cheng
,
Q.
,
Wu
,
Y.
, and
Zhou
,
K.
,
2023
, “
Numerical Investigations on the Performance of a Hydrogen-Fueled Micro Planar Combustor With Tube Outlet for Thermophotovoltaic Applications
,”
Energy.
,
263
, p.
125957
.
26.
Yang
,
X.
,
Yu
,
B.
,
Peng
,
X.
, and
Zhou
,
H.
,
2021
, “
Investigation of Thermal Performance and Energy Conversion in a Novel Planar Micro-Combustor With Four-Corner Entrances for Thermo-Photovoltaic Power Generators
,”
J. Power Sources
,
515
.
27.
Edalati-Nejad
,
A.
,
Fanaee
,
S. A.
,
Ghodrat
,
M.
, and
Khadem
,
J.
,
2021
, “
Investigation of Unsteady Premixed Micro/Macro Counterflow Flames for Lean to Rich Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052302
.
28.
Nair
,
S.
, and
Lieuwen
,
T.
,
2007
, “
Near-Blowoff Dynamics of a Bluff-Body Stabilized Flame
,”
J. Propuls. Power
,
23
(
2
), pp.
421
427
.
29.
Wan
,
J.
,
Fan
,
A.
,
Maruta
,
K.
,
Yao
,
H.
, and
Liu
,
W.
,
2012
, “
Experimental and Numerical Investigation on Combustion Characteristics of Premixed Hydrogen/Air Flame in a Micro-Combustor With a Bluff Body
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19190
19197
.
30.
Fan
,
A.
,
Wan
,
J.
,
Liu
,
Y.
,
Pi
,
B.
,
Yao
,
H.
,
Maruta
,
K.
, and
Liu
,
W.
,
2013
, “
The Effect of the Blockage Ratio on the Blow-Off Limit of a Hydrogen/Air Flame in a Planar Micro-Combustor With a Bluff Body
,”
Int. J. Hydrogen Energy
,
38
(
26
), pp.
11438
11445
.
31.
Bagheri
,
G.
,
Hosseini
,
S. E.
, and
Wahid
,
M. A.
,
2014
, “
Effects of Bluff Body Shape on the Flame Stability in Premixed Micro-Combustion of Hydrogen-Air Mixture
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
266
272
.
32.
Fan
,
A.
,
Wan
,
J.
,
Liu
,
Y.
,
Pi
,
B.
,
Yao
,
H.
, and
Liu
,
W.
,
2014
, “
Effect of Bluff Body Shape on the Blow-Off Limit of Hydrogen/air Flame in a Planar Micro-Combustor
,”
Appl. Therm. Eng.
,
62
(
1
), pp.
13
19
.
33.
Yan
,
Y.
,
He
,
Z.
,
Xu
,
Q.
,
Zhang
,
L.
,
Li
,
L.
,
Yang
,
Z.
, and
Ran
,
J.
,
2019
, “
Numerical Study on Premixed Hydrogen/Air Combustion Characteristics in Micro–Combustor With Slits on Both Sides of the Bluff Body
,”
Int. J. Hydrogen Energy
,
44
(
3
), pp.
1998
2012
.
34.
Yan
,
Y.
,
Xu
,
F.
,
Xu
,
Q.
,
Zhang
,
L.
,
Yang
,
Z.
, and
Ran
,
J.
,
2019
, “
Influence of Controllable Slit Width and Angle of Controllable Flow on Hydrogen/Air Premixed Combustion Characteristics in Micro Combustor With Both Sides–Slitted Bluff Body
,”
Int. J. Hydrogen Energy
,
44
(
36
), pp.
20482
20492
.
35.
Yan
,
Y.
,
Liu
,
Y.
,
Li
,
L.
,
Cui
,
Y.
,
Zhang
,
L.
,
Yang
,
Z.
, and
Zhang
,
Z.
,
2019
, “
Numerical Comparison of H2/Air Catalytic Combustion Characteristic of Micro–Combustors With a Conventional, Slotted or Controllable Slotted Bluff Body
,”
Energy
,
189
, p.
116242
.
36.
Yan
,
Y.
,
Shen
,
K.
,
Cui
,
Y.
,
He
,
Z.
,
Zhang
,
L.
,
Yang
,
Z.
, and
Ran
,
J.
,
2020
, “
Effects of Slitting Size and Inlet Operating Conditions on Hydrogen Combustion Characteristics in a Micro-Combustor With a Controllable Vortex Slotted Bluff Body
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042302
.
37.
Srinivasa Raghavan
,
K. A.
,
Srinivasa Rao
,
S.
, and
Raju
,
V. R. K.
,
2022
, “
Numerical Investigation of the Effect of the Slit Profile on the Combustion Characteristics of a Micro-Combustor With a Centrally Slotted Bluff Body
,”
Proc. Inst. Mech. Eng. Part E: J. Process. Mech. Eng.
237
(
3
), pp.
917
927
.
38.
Raghavan
,
K. A. S.
,
Rao
,
S. S.
, and
Raju
,
V. R. K.
,
2023
, “
Numerical Investigation of the Effect of Slit-Width on the Combustion Characteristics of a Micro-Combustor With a Centrally Slotted Bluff Body
,”
Int. J. Hydrogen Energy
,
48
(
14
), pp.
5696
5707
.
39.
Gao
,
W.
,
Yan
,
Y.
,
Huang
,
L.
,
Shen
,
K.
,
He
,
Z.
, and
Gao
,
B.
,
2021
, “
Numerical Comparison of Premixed H2/Air Combustion Characteristic of Three Types of Micro Cavity-Combustors With Guide Vanes, Bluff Body, Guide Vanes and Bluff Body Respectively
,”
Int. J. Hydrogen Energy
,
46
(
47
), pp.
24382
24394
.
40.
Gao
,
W.
,
Yan
,
Y.
,
Shen
,
K.
,
Huang
,
L.
,
Zhao
,
T.
, and
Gao
,
B.
,
2022
, “
Combustion Characteristic of Premixed H2/Air in the Micro Cavity Combustor With Guide Vanes
,”
Energy
,
239
, p.
121975
.
41.
Zhang
,
Q.
,
Shanbhogue
,
S. J.
,
Lieuwen
,
T.
, and
O’Connor
,
J.
,
2011
, “
Strain Characteristics Near the Flame Attachment Point in a Swirling Flow
,”
Combust. Sci. Technol.
,
183
(
7
), pp.
665
685
.
42.
Kedia
,
K. S.
, and
Ghoniem
,
A. F.
,
2015
, “
The Blow-Off Mechanism of a Bluff-Body Stabilized Laminar Premixed Flame
,”
Combust. Flame
,
162
(
4
), pp.
1304
1315
.
43.
Zhang
,
Z.
,
Wu
,
K.
,
Yao
,
W.
,
Yuen
,
R.
, and
Wang
,
J.
,
2020
, “
Enhancement of Combustion Performance in a Microchannel: Synergistic Effects of Bluff-Body and Cavity
,”
Fuel
,
265
.
44.
Fan
,
A.
,
Wan
,
J.
,
Maruta
,
K.
,
Yao
,
H.
, and
Liu
,
W.
,
2013
, “
Interactions Between Heat Transfer, Flow Field and Flame Stabilization in a Micro-Combustor With a Bluff Body
,”
Int. J. Heat Mass Transfer
,
66
, pp.
72
79
.
45.
Khandelwal
,
B.
,
Sahota
,
G. P. S.
, and
Kumar
,
S.
,
2010
, “
Investigations Into the Flame Stability Limits in a Backward Step Micro Scale Combustor With Premixed Methane-Air Mixtures
,”
J. Micromech. Microeng.
,
20
(
9
), p.
095030
.
46.
Tang
,
A.
,
Xu
,
Y.
,
Shan
,
C.
,
Pan
,
J.
, and
Liu
,
Y.
,
2015
, “
A Comparative Study on Combustion Characteristics of Methane, Propane and Hydrogen Fuels in a Micro-Combustor
,”
Int. J. Hydrogen Energy
,
40
(
46
), pp.
16587
16596
.
47.
He
,
Z.
,
Yan
,
Y.
,
Zhao
,
T.
,
Feng
,
S.
,
Li
,
X.
,
Zhang
,
L.
, and
Zhang
,
Z.
,
2021
, “
Heat Transfer Enhancement and Exergy Efficiency Improvement of a Micro Combustor With Internal Spiral Fins for Thermophotovoltaic Systems
,”
Appl. Therm. Eng.
,
189
, p.
116723
.
48.
Kuo
,
C. H.
, and
Ronney
,
P. D.
,
2007
, “
Numerical Modeling of Non-Adiabatic Heat-Recirculating Combustors
,”
Proc. Combust. Inst.
,
31
(
II
), pp.
3277
3284
.
49.
Magnussen
,
B.
,
1981
, “
On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow
,”
19th Aerospace Sciences Meeting
,
St. Louis, MO
,
Jan. 12
.
50.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinet.
,
36
(
10
), pp.
566
575
.
51.
Chen
,
L.
, and
Battaglia
,
F.
,
2017
, “
The Effects of Inlet Turbulence Intensity and Computational Domain on a Nonpremixed Bluff-Body Flame
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022205
.
52.
Boache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
You do not currently have access to this content.