Abstract

The global adoption of Savonius wind rotors as an eco-friendly means of small-scale power production is on the rise. However, their suboptimal performance remains a significant challenge due to the generation of higher unproductive torque. This paper aims to address this issue by obtaining an optimal blade profile considering the power coefficient (CP) as an output function using optimization techniques. The objective function includes the overlap ratio, intermediate points on the curve, inlet velocity, and tip speed ratio (TSR) as the optimization geometric parameters. To achieve this, the simplex search method and the non-dominated sorting genetic algorithm II are opted to develop the blade profile. The blade profile is developed using a natural cubic spline curve with fixed end points and variable intermediate points along with other parameters. The computational analysis is done using ansys fluent software with shear stress transport k−ω turbulence model. The solver setup employs the finite volume method to simulate the transient 2D flow around the blade profile. A direct comparison is made between the optimized blade profile and the conventional semicircular one over a range of TSRs. The results clearly indicate the superior performance of the former, exhibiting a higher CPmax by 23% compared to the conventional one at TSR = 0.8. Finally, experiments have been conducted in a wind tunnel to find the practical feasibility of the optimized blade profile generated through the simplex search method.

References

1.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
50801
.
2.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
51201
.
3.
Talukdar
,
P. K.
,
Alom
,
N.
,
Rathod
,
U. H.
, and
Kulkarni
,
V.
,
2022
, “
Alternative Blade Profile Based on Savonius Concept for Effective Wind Energy Harvesting
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
041304
.
4.
Wong
,
K. H.
,
Chong
,
W. T.
,
Sukiman
,
N. L.
,
Poh
,
S. C.
,
Shiah
,
Y.-C.
, and
Wang
,
C.-T.
,
2017
, “
Performance Enhancements on Vertical Axis Wind Turbines Using Flow Augmentation Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
904
921
.
5.
Ogawa
,
T.
,
Yoshida
,
H.
, and
Yokota
,
Y.
,
1989
, “
Development of Rotational Speed Control Systems for a Savonius-Type Wind Turbine
,”
ASME J. Fluids Eng.
,
111
(
1
), pp.
53
58
.
6.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
050801
.
7.
Al-Bahadly
,
I.
,
2009
, “
Building a Wind Turbine for Rural Home
,”
Energy Sustainable Dev.
,
13
(
3
), pp.
159
165
.
8.
Mojola
,
O. O.
,
1985
, “
The Aerodynamic Design of the Savonius Windmill Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
21
(
2
), pp.
223
231
.
9.
Altan
,
B. D.
, and
Atilgan
,
M.
,
2008
, “
An Experimental and Numerical Study on the Improvement of the Performance of Savonius Wind Rotor
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3425
3432
.
10.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
064
1073
.
11.
Mahmoud
,
N. H.
,
El-Haroun
,
A. A.
,
Wahba
,
E.
, and
Nasef
,
M. H.
,
2012
, “
An Experimental Study on Improvement of Savonius Rotor Performance
,”
Alexandria Eng. J.
,
51
(
1
), pp.
19
25
.
12.
El-Askary
,
W. A.
,
Saad
,
A. S.
,
AbdelSalam
,
A. M.
, and
Sakr
,
I. M.
,
2020
, “
Experimental and Theoretical Studies for Improving the Performance of a Modified Shape Savonius Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121303
.
13.
Modi
,
V. J.
, and
Fernando
,
M. S. U. K.
,
1989
, “
On the Performance of the Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
111
(
1
), pp.
71
81
.
14.
Laws
,
P.
,
Saini
,
J. S.
,
Kumar
,
A.
, and
Mitra
,
S.
,
2020
, “
Improvement in Savonius Wind Turbines Efficiency by Modification of Blade Designs—A Numerical Study
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061303
.
15.
Fujisawa
,
N.
,
1992
, “
On the Torque Mechanism of Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
40
(
3
), pp.
227
292
.
16.
Mohan
,
M.
, and
Saha
,
U. K.
,
2023
, “
Computational Study of a Newly Developed Parabolic Blade Profile of a Savonius Wind Rotor
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
10
), p.
Article number 548
.
17.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renewable Energy
,
60
, pp.
578
585
.
18.
Rahai
,
H.
, and
Hefazi
,
H
.,
2008
, “
Vertical Axis Wind Turbine With Optimized Blade Profile
,” U.S. Patent No. 7,393,177.
19.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2011
, “
Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade
,”
Energy Convers. Manage.
,
52
(
1
), pp.
236
242
.
20.
Rathod
,
U. H.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2023
, “
Evolving a Bio-Inspired Blade Shape of the Drag-Based Vertical-Axis Wind Rotor Derived From Orange Sea-Pen (Ptilosarcus gurneyi)
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031007
.
21.
Zhou
,
T.
, and
Rempfer
,
D.
,
2013
, “
Numerical Study of Detailed Flow-Field and Performance of Savonius Wind Turbines
,”
Renewable Energy
,
51
, pp.
373
381
.
22.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Performance Evaluation of Vent-Augmented Elliptical-Bladed Savonius Rotors by Numerical Simulation and Wind Tunnel Experiments
,”
Energy
,
152
, pp.
277
290
.
23.
Chan
,
C. M.
,
Bai
,
H. L.
, and
He
,
D. Q.
,
2018
, “
Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm
,”
Appl. Energy
,
213
, pp.
148
157
.
24.
Mari
,
M.
,
Venturini
,
M.
, and
Beyene
,
A.
,
2017
, “
A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
061202
.
25.
Akwa
,
J. V.
,
Alves Da Silva Junior
,
G.
, and
Petry
,
A. P.
,
2012
, “
Discussion on the Verification of the Overlap Ratio Influence on Performance Coefficients of a Savonius Wind Rotor Using Computational Fluid Dynamics
,”
Renewable Energy
,
38
(
1
), pp.
141
149
.
26.
Das
,
R.
,
Roy
,
S.
, and
Saha
,
U. K.
,
2018
, “
An Inverse Method for Optimization of Geometric Parameters of a Savonius-Style Wind Turbine
,”
Energy Convers. Manage.
,
155
, pp.
116
127
.
27.
Alom
,
N.
,
Das
,
R.
, and
Saha
,
U. K.
,
2019
, “
A Differential Evolution-Based Inverse Method to Optimize Blade Configurations in Elliptical-Bladed Savonius Wind Turbines
,”
ASME Gas Turbine India Conference
,
Chennai, India
,
Dec. 5–6
, Vol. 83532, p. V002T06A004, Paper No. GTIndia2019-2352.
28.
Alom
,
N.
,
Das
,
R.
, and
Saha
,
U. K.
,
2019
, “
Optimization of Aerodynamic Parameters of an Elliptical-Bladed Savonius Wind Rotor Using Multi-Objective Genetic Algorithm
,”
ASME Gas Turbine India Conference
,
Chennai, India
,
Dec. 5–6
, Vol. 83532, p. V002T06A003, Paper No. GTIndia2019-2346.
29.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T. A. M. T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
30.
Alexander
,
A. J.
, and
Holownia
,
B. P.
,
1978
, “
Wind Tunnel Tests on a Savonius Rotor
,”
J. Ind. Aerodyn.
,
3
(
4
), pp.
343
351
.
31.
Menet
,
J. L.
,
2004
, “
A Double-Step Savonius Rotor for Local Production of Electricity: A Design Study
,”
Renewable Energy
,
29
(
11
), pp.
1843
1862
.
32.
Ravindran
,
A.
,
Ragsdell
,
K. M.
, and
Reklaitis
,
G. V.
,
2006
,
Engineering Optimization: Methods and Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
33.
Ogawa
,
T.
,
1984
, “
Theoretical Study on the Flow About Savonius Rotor
,”
ASME J. Fluids Eng.
,
106
(
1
), pp.
85
91
.
34.
Mohan
,
M.
,
Alom
,
N.
, and
Saha
,
U. K.
,
2023
, “
Role of Optimization and Soft-Computing Techniques in the Design and Development of Futuristic Savonius Wind Turbine Blades: A Review
,”
Wind Eng.
,
47
(
3
), pp.
722
744
.
35.
Mohan
,
M.
,
Kansagara
,
D. D.
,
Sharma
,
D.
, and
Saha
,
U. K.
,
2021a
, “
Estimating the Aerodynamic Coefficients of a Savonius Rotor Blade Profile Developed Through the Simplex Search Method
,”
ASME Gas Turbine India Conference
,
Virtual, Online
,
Dec. 2–3
, Vol.
85536
, p.
V001T09A003
.
36.
Mohan
,
M.
, and
Saha
,
U. K.
,
2021b
, “
Overlap Ratio as the Design Variable for Maximizing the Efficiency of a Savonius Wind Rotor: An Optimization Approach
,”
ASME International Mechanical Engineering Congress and Exposition
,
Virtual, Online
,
Nov. 1–5
, Vol.
85642
, p.
V08BT08A025
.
37.
ANSYS Inc
,
2009
, ANSYS Fluent Theory Guide 12.0.
38.
ANSYS Inc
,
2015
, ANSYS Fluent Theory Guide 12.0.
39.
Blackwell
,
B. F.
,
Sheldahl
,
R. E.
, and
Feltz
,
L. V.
,
1977
, “
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,” Sandia Laboratories Report: SAND 76-0131, pp.
1
105
.
40.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Influence of Blade Profiles on Savonius Rotor Performance: Numerical Simulation and Experimental Validation
,”
Energy Convers. Manage.
,
186
, pp.
267
277
.
41.
Roy
,
S.
, and
Saha
,
U. K.
,
2014
, “
An Adapted Blockage Factor Correlation Approach in Wind Tunnel Experiments of a Savonius-Style Wind Turbine
,”
Energy Convers. Manage.
,
86
, pp.
418
427
.
42.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.
You do not currently have access to this content.