Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-2 of 2
Keywords: functional network
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: ASME
Article Type: Research Papers
J. Energy Resour. Technol. September 2021, 143(9): 093004.
Paper No: JERT-20-1898
Published Online: May 3, 2021
... on principal component analysis (PCA), and functional network (FN) techniques were employed to build two UCS prediction models based on the drilling data such as weight on bit (WOB), drill string rotating speed (RS), drilling torque (T), stand-pipe pressure (SPP), mud pumping rate (Q), and the rate...
Journal Articles
Publisher: ASME
Article Type: Research Papers
J. Energy Resour. Technol. November 2021, 143(11): 113003.
Paper No: JERT-21-1031
Published Online: April 19, 2021
... the combined use of two machine learning (ML) technique, viz., functional network (FN) coupled with particle swarm optimization (PSO) in predicting the black oil PVT properties such as bubble point pressure (P b ), oil formation volume factor at Pb, and oil viscosity at Pb. This study also proposes new...