A study of the interaction between an initially columnar intake vortex (hereinafter referred to as the primary vortex) and vortex structures in the wake of a single sphere (hereinafter referred to as secondary vortices) is performed using a series of flow visualization experiments, in which a sphere is towed toward a stationary vortex with ambient axial flow and gradually decelerated to rest at a specified distance from the vortex core axis. Both the primary vortex core and the boundary layer of the sphere are visualized using laser-induced fluorescent dyes of two different colors, which are illuminated either with a laser sheet or a laser volume. The strength of the primary vortex is measured using particle-image velocimetry, which is also used to measure the strength of the secondary vortices in select cases. The form of the sphere wake in the presence of the primary vortex and the effect of the induced velocity from the secondary vortices on the primary vortex are studied for different values of the vortex-sphere separation distance, the sphere diameter, and the primary vortex core radius. Weak secondary vortices are observed to induce formation of small-amplitude waves of varying core area on the primary vortex, eventually forming a turbulent sheath surrounding the primary vortex. Stronger secondary vortices have an increasingly strong effect on the primary vortex, including large-amplitude variation in core area, outward ejection of fluid from the primary vortex core, and breakdown of the primary vortex. [S0098-2202(00)01403-6]

1.
Sheridan
,
P. F.
, and
Smith
,
R. F.
,
1980
, “
Interactional Aerodynamics—A New Challenge to Helicopter Technology
,”
J. Am. Helicopter Soc.
,
25
, No.
1
, pp.
3
21
.
2.
Crowe
,
C. T.
,
Troutt
,
T. R.
, and
Chung
,
J. N.
,
1996
, “
Numerical Models for Two-Phase Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
11
43
.
3.
Gore
,
R. A.
, and
Crowe
,
C. T.
,
1989
, “
Effect of Particle Size on Modulating Turbulence Intensity
,”
Int. J. Multiphase Flow
,
15
, pp.
279
285
.
4.
Rockwell
,
D.
,
1998
, “
Vortex-Body Interactions
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
199
229
.
5.
Doligalski
,
T. L.
,
Smith
,
C. R.
, and
Walker
,
J. D. A.
,
1994
, “
Vortex Interactions With Walls
,”
Annu. Rev. Fluid Mech.
,
26
, pp.
573
616
.
6.
Kim
,
J. M.
, and
Komerath
,
N. M.
,
1995
, “
Summary of the Interaction of a Rotor Wake With a Circular Cylinder
,”
AIAA J.
,
33
, No.
3
, pp.
470
478
.
7.
Krishnamoorthy
,
S.
, and
Marshall
,
J. S.
,
1998
, “
Three-Dimensional Blade-Vortex Interaction in the Strong Vortex Regime
,”
Phys. Fluids
,
10
, No.
11
, pp.
2828
2845
.
8.
Liou
,
S. G.
,
Komerath
,
N. M.
, and
McMahon
,
H. M.
,
1990
, “
Measurement of the Interaction Between a Rotor Tip Vortex and a Cylinder
,”
AIAA J.
,
28
, No.
6
, pp.
975
981
.
9.
Krishnamoorthy
,
S.
,
Gossler
,
A. A.
, and
Marshall
,
J. S.
,
1999
, “
Normal Vortex Interaction With a Circular Cylinder
,”
AIAA J.
,
37
, No.
1
, pp.
50
57
.
10.
Dhanak
,
M. R.
,
1981
, “
Interaction Between a Vortex Filament and an Approaching Rigid Sphere
,”
J. Fluid Mech.
,
110
, pp.
129
147
.
11.
Moore
,
D. W.
, and
Saffman
,
P. G.
,
1972
, “
The Motion of a Vortex Filament With Axial Flow
,”
Philos. Trans. R. Soc. London, Ser. A
,
272
, pp.
403
429
.
12.
Pedrizzetti
,
G.
,
1992
, “
Close Interaction Between a Vortex Filament and a Rigid Sphere
,”
J. Fluid Mech.
,
245
, pp.
701
722
.
13.
Knio
,
O. M.
, and
Ting
,
L.
,
1997
, “
Vortical Flow Outside a Sphere and Sound Generation
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
57
, pp.
972
981
.
14.
Minota
,
T.
,
Kambe
,
T.
, and
Murakami
,
T.
,
1988
, “
Acoustic Emission From Interaction of a Vortex Ring With a Sphere
,”
Fluid Dyn. Res.
,
3
, pp.
357
362
.
15.
Kim
,
I.
,
Elghobashi
,
S.
, and
Sirignano
,
W. A.
,
1995
, “
Unsteady Flow Interactions Between an Advected Cylindrical Vortex Tube and a Spherical Particle
,”
J. Fluid Mech.
,
288
, pp.
123
155
.
16.
Kim
,
I.
,
Elghobashi
,
S.
, and
Sirignano
,
W. A.
,
1997
, “
Unsteady Flow Interactions Between a Pair of Advected Vortex Tubes and a Rigid Sphere
,”
Int. J. Multiphase Flow
,
23
, No.
1
, pp.
1
23
.
17.
Melander
,
M. V.
, and
Hussain
,
F.
,
1993
, “
Coupling Between a Coherent Structure and Fine-Scale Turbulence
,”
Phys. Rev. E
,
48
, pp.
2669
2689
.
18.
Miyazaki
,
T.
, and
Hunt
,
J. C.
,
2000
, “
Linear and Nonlinear Interactions Between a Columnar Vortex and External Turbulence
,”
J. Fluid Mech.
,
402
, pp.
349
378
.
19.
Marshall, J. S., and Beninati, M. L., 2000, “Turbulence Evolution in Vortex-Dominated Flows,” Advances in Fluid Mechanics, Vol. 25, Nonlinear Instability, Chaos, and Turbulence II, Debnath, L., and Riahi, D. N., eds., WIT Press, Southampton, England, pp. 1–40.
20.
Marshall
,
J. S.
,
1997
, “
The Flow Induced by Periodic Vortex Rings Wrapped Around a Columnar Vortex Core
,”
J. Fluid Mech.
,
345
, pp.
1
30
.
21.
Marshall
,
J. S.
,
1993
, “
The Effect of Axial Pressure Gradient on Axisymmetrical and Helical Vortex Waves
,”
Phys. Fluids A
,
5
, pp.
588
599
.
22.
Achenbach
,
E.
,
1974
, “
Vortex Shedding From Spheres
,”
J. Fluid Mech.
,
62
, No.
2
, pp.
209
221
.
23.
Magarvey
,
R. H.
, and
Bishop
,
R. L.
,
1961
, “
Transitional Ranges for Three-Dimensional Wakes
,”
Can. J. Phys.
,
39
, pp.
1418
1422
.
24.
Magarvey
,
R. H.
, and
MacLatchy
,
C. S.
,
1965
, “
Vortices in Sphere Wakes
,”
Can. J. Phys.
,
43
, pp.
1649
1656
.
25.
Sakamoto
,
H.
, and
Haniu
,
H.
,
1990
, “
A Study on Vortex Shedding From Spheres in a Uniform Flow
,”
ASME J. Fluids Eng.
,
112
, pp.
386
392
.
26.
Taneda
,
S.
,
1956
, “
Experimental Investigation of the Wake Behind a Sphere at Low Reynolds Numbers
,”
J. Phys. Soc. Jpn.
,
11
, No.
10
, pp.
1104
1108
.
27.
Tomboulides, A. G., Orszag, S. A., and Karniadakis, G. E., 1993, “Direct and Large-Eddy Simulation of Axisymmetric Wakes,” AIAA paper AIAA-93-0546.
28.
Johnson
,
T. A.
, and
Patel
,
V. C.
,
1999
, “
Flow Past a Sphere up to a Reynolds Number of 300
,”
J. Fluid Mech.
,
378
, pp.
19
70
.
29.
Sakamoto
,
H.
, and
Haniu
,
H.
,
1995
, “
The Formation Mechanism and Shedding Frequency of Vortices From a Sphere in Uniform Shear Flow
,”
J. Fluid Mech.
,
287
, pp.
151
171
.
30.
Gossler, A. A., 1999, “A Tetrahedral Element Lagrangian Vorticity Method With Application to Vortex-Cylinder Interaction,” Ph.D. dissertation, University of Iowa, Iowa City, Iowa.
31.
Arms
,
R. J.
, and
Hama
,
F. R.
,
1965
, “
Localized-Induction Concept on a Curved Vortex and Motion of an Elliptic Vortex Ring
,”
Phys. Fluids
,
8
, No.
4
, pp.
553
559
.
32.
Hall
,
M. G.
,
1972
, “
Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
4
, pp.
195
218
.
33.
Leibovich
,
S.
,
1983
, “
Vortex Stability and Breakdown: Survey and Extension
,”
AIAA J.
,
22
, No.
9
, pp.
1192
1206
.
34.
Marshall
,
J. S.
,
1994
, “
Vortex Cutting by a Blade. Part I. General Theory and a Simple Solution
,”
AIAA J.
,
32
, No.
6
, pp.
1145
1150
.
35.
Krishnamoorthy
,
S.
, and
Marshall
,
J. S.
,
1994
, “
An Experimental Investigation of ‘Vortex Shocks’
,”
Phys. Fluids
,
6
, No.
11
, pp.
3737
3741
.
36.
Marshall
,
J. S.
, and
Krishnamoorthy
,
S.
,
1997
, “
On the Instantaneous Cutting of a Columnar Vortex With Non-Zero Axial Flow
,”
J. Fluid Mech.
,
351
, pp.
41
74
.
37.
Rashidi
,
M.
,
Hetsroni
,
G.
, and
Banerjee
,
S.
,
1990
, “
Particle-Turbulence Interaction in a Boundary Layer
,”
Int. J. Multiphase Flow
,
16
, No.
6
, pp.
935
949
.
You do not currently have access to this content.