The pulsating flow field in a 90 deg bifurcation was examined by performing LDV measurements in a model with square cross-sections and equal branch flow rates. The three-dimensional separation zones of both branches were studied revealing details of their temporal evolution. During acceleration the flow was attached, but close to the peak flow condition, separation initiated at both branches. The basic feature of the reverse flow zones at a given time instant was that these shrank streamwise in a direction perpendicular to the bifurcation plane and grew at the symmetry plane. Flow instabilities were strong in the horizontal branch during acceleration, in contrast to the vertical branch in which these appeared during deceleration. Comparison of this flow field for a particular time instant with the flow field under steady inlet conditions and similar Re, revealed that for the steady case the flow separated in the horizontal branch upstream of the unsteady case. [S0098-2202(00)03002-9]

1.
Fernandez
,
R. C.
,
De Witt
,
K. J.
, and
Botwin
,
M. R.
,
1976
, “
Pulsatile flow through a bifurcation with applications to arterial disease
,”
J. Biomech.
,
9
, pp.
575
580
.
2.
Siouffi
,
M.
,
Pelissier
,
R.
,
Farahifar
,
D.
, and
Rieu
,
R.
,
1984
, “
The effect of unsteadiness on the flow through stenoses and bifurcations
,”
J. Biomech.
,
17
, pp.
299
315
.
3.
Rindt
,
C. C. M.
,
Vosse
,
F. N. v. d.
,
Steenhoven
,
A. A. v.
, and
Janssen
,
J. D.
,
1987
, “
A numerical and experimental analysis of the flow field in a two-dimensional model of the human carotid artery bifurcation
,”
J. Biomech.
,
20
, No.
5
, pp.
499
509
.
4.
Naiki
,
T.
,
Hayasi
,
K.
, and
Takemura
,
S.
,
1995
, “
An LDA and flow visualization study of pulsatile flow in an aortic bifurcation model
,”
Biorheology
,
32
, pp.
43
59
.
5.
Sung
,
H-W.
, and
Yoganatham
,
A. P.
,
1990
, “
Axial flow velocity patterns in a normal human pulmonary artery model: Pulsatile in vitro studies
,”
J. Biomech.
,
23
, pp.
201
214
.
6.
Ku
,
D. N.
, and
Giddens
,
D. P.
,
1987
, “
Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation
,”
J. Biomech.
,
20
, pp.
407
421
.
7.
Pedersen
,
E. M.
,
Yoganatham
,
A. P.
, and
Lefebvre
,
X. P.
,
1992
, “
Pulsatile flow visualization in a model of the human abdominal aorta and aortic bifurcation
,”
J. Biomech.
,
25
, pp.
935
944
.
8.
Moore
,
J. E.
, and
Ku
,
D. N.
,
1994
, “
Pulsatile velocity measurements in a model of the human abdominal aorta under simulated and postprandial conditions
,”
ASME J. Biomech. Eng.
,
116
, pp.
107
111
.
9.
Yamaguchi
,
R.
, and
Kohtoh
,
K.
,
1994
, “
Sinusoidal variation of wall shear stess in daughter tube through 45 deg branch model in laminar flow
,”
J. Biomech. Eng.
,
116
, pp.
119
126
.
10.
Kawaguti
,
M.
, and
Hamano
,
A.
,
1980
, “
Numerical study on bifurcating flow of a viscous fluid. II. Pulsatile flow
,”
J. Phys. Soc. Jpn.
,
49
, pp.
817
824
.
11.
Perktold
,
K.
, and
Rappitsch
,
G.
,
1995
, “
Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model
,”
J. Biomech.
,
28
, No.
7
, pp.
845
856
.
12.
Perktold
,
K.
,
Hofer
,
M.
,
Rappitsch
,
G.
,
Loew
,
M.
,
Kuban
,
B. D.
, and
Friedman
,
M. H.
,
1998
, “
Validated computation of physiologic flow in a realistic coronary artery branch
,”
J. Biomech.
,
31
, pp.
217
228
.
13.
Mathioulakis
,
D. S.
, and
Telionis
,
D. P.
,
1989
, “
Pulsating flow over an ellipse at an angle of attack
,”
J. Fluid Mech.
,
204
, pp.
99
121
.
14.
Mcdonald, D. A., 1974, Blood Flow in Arteries, textbook, Edward Arnold, London.
15.
Hughes
,
P. E.
, and
How
,
T. V.
,
1994
, “
Pulsatile velocity distribution and wall shear rate measurement using pulsed doppler ultrasound
,”
J. Biomech.
,
27
, No.
1
, pp.
103
110
.
16.
Bharadvaj
,
B. K.
,
Mabon
,
R. F.
, and
Giddens
,
D. P.
,
1982
, “
Steady flow in a model of the human carotid bifurcation, Part I-Flow visualization, Part 2Laser-Doppler anemometer measurements
,”
J. Biomech.
,
15
, pp.
349
378
.
17.
Jin
,
W.
, and
Clark
,
C.
,
1993
, “
A correlation method for determining the number of sampling cycles required for pulsating flow analysis using LDA
,”
J. Biomech.
,
27
, No.
9
, pp.
1179
1181
.
18.
Rindt
,
C. C. M.
, and
Steenhoven
,
A. A. v.
,
1996
, “
Unsteady flow in a rigid 3-D model of the carotid artery bifurcation
,”
J. Biomech.
,
118
, pp.
90
96
.
19.
Mathioulakis
,
D. S.
,
Pappou
,
Th.
, and
Tsangaris
,
S.
,
1997
, “
An experimental and numerical study of a 90° bifurcation
,”
Fluid Dyn. Res.
,
19
, pp.
1
26
.
20.
Neary
,
V. S.
, and
Sotiropoulos
,
F.
,
1996
, “
Numerical investigation of laminar flows through 90-degree diversions of rectangular cross-section
,”
Comput. Fluids
,
25
, pp.
95
118
.
21.
Mezaris, T. B., and Telionis, D. P., 1980, “Visualization and measurement of separating oscillatory laminar flow,” AIAA Paper 80–1420.
22.
Mathioulakis
,
D. S.
, and
Telionis
,
D. P.
,
1987
, “
Velocity and vorticity distributions in periodic separating laminar flow
,”
J. Fluid Mech.
,
184
, pp.
303
333
.
23.
Rieu R., Pelissier, R., and Deplano, V., 1990, “Flow in rigid and arterial graft bifurcation models,” Biomechanical Transport Processes, F. Mosora, ed., pp. 115–123.
24.
Shipkowitz
,
T.
,
Rodgers
,
V. G. J.
,
Frazin
,
L. J.
, and
Chandran
,
K. B.
,
1998
, “
Numerical study on the effect of steady axial flow development in the human aorta on local shear stresses in abdominal aortic branches
,”
J. Biomech.
,
31
, pp.
995
1007
.
You do not currently have access to this content.