Many important technological and natural processes involving flow through porous media are characterized by large filtration velocity. It is important to know when the transition from the linear flow regime to the quadratic flow regime actually occurs to obtain accurate models for these processes. By interpreting the quadratic extension of the original Darcy equation as a model of the macroscopic form drag, we suggest a physically consistent parameter to characterize the transition to quadratic flow regime in place of the Reynolds number, Re. We demonstrate that an additional data set obtained by Darcy, and so far ignored by the community, indeed supports the Darcy equation. Finally, we emphasize that the cubic extension proposed in the literature, proportional to Re3 and mathematically valid only for Re1, is irrelevant in practice. Hence, it should not be compared to the quadratic extension experimentally observed when ReO1.[S0098-2202(00)01703-X]

1.
Davis
,
P. A.
,
Olague
,
N. E.
, and
Goodrich
,
M. T.
,
1992
, “
Application of a Validation Strategy to Darcy’s Experiment
,”
Adv. Water Resour.
,
15
, pp.
175
180
.
1.
Darcy, H. P. G., 1856, Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont, Paris.
2.
Davis, P. A., and Goodrich, M. T., 1990, “A Proposed Strategy for the Validation of Ground-Water Flow and Solute Transport Models,” Proc. GEOVAL-90 Conf., Stokholm, Sweden.
1.
Kuznetsov
,
A. V.
,
1997
, “
Investigation of the Coupled Heat Transfer, Fluid Flow and the Solute Transport During the Strip Casting Process
,”
Int. J. Heat Mass Transf.
,
40
, pp.
2949
2961
.
2.
Lage
,
J. L.
,
Weinert
,
A. K.
,
Price
,
D. C.
, and
Weber
,
R. M.
,
1996
, “
Numerical Study of a Low Permeability Microporous Heat Sink for Cooling Phased-Array Radar Systems
,”
Int. J. Heat Mass Transf.
,
39
, pp.
3633
3647
.
3.
Antohe
,
B. V.
,
Lage
,
J. L.
,
Price
,
D. C.
, and
Weber
,
R. M.
,
1996
, “
Numerical Characterization of Micro Heat Exchangers using Experimentally Tested Porous Aluminum Layers
,”
Int. J. Heat Fluid Flow
,
17
, pp.
594
603
.
4.
Lage
,
J. L.
,
1997
, “
Contaminant Transport Through Single Fracture with Porous Obstructions
,”
ASME J. Fluids Eng.
119
, pp.
180
187
.
5.
Hazen
,
A.
,
1893
, “Some Physical Properties of Sand and Gravels with Special Reference to Their Use in Filtration,” Massachusetts State Board of Health, Twenty-fourth Annual Report, p. 541.
6.
Kru¨ger
,
E.
,
1918
, “
Die Grundwasserbewegung
,”
Int. Mitt. Boden.
,
8
, p.
105
105
.
7.
Dupuit, A. J. E. J., 1863, E´tudes The´oriques et Pratiques sur le Mouvement des aux dans les Canaux De´couverts et a Travers les Terrains Perme´ables, Victor Dalmont, Paris.
8.
Forchheimer
,
P.
,
1901
, “
Wasserbewegun durch Boden
,”
Z. Ver. Deutsch. Ingen.
,
45
, pp.
1782
1788
.
9.
Prony, R. de, 1804, Recherches Physico-mathe´matiques sur la The´orie des Eaux Courants, Paris.
10.
Newton, I., 1687, Philosophiae Naturalis Principia Mathematica [1995, The Principial, Translated by Andrew Motte, Prometheus Books, New York].
11.
Ward
,
J. C.
,
1964
, “
Turbulent Flow in Porous Media
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
90
, HY 5, pp.
1
12
.
12.
Beavers
,
G. S.
,
Sparrow
,
E. M.
, and
Rodenz
,
D. E.
,
1973
, “
Influence of Bed Size on the Flow Characteristics and Porosity of Randomly Packed Beds of Spheres
,”
ASME J. Appl. Mech.
,
40
, pp.
655
660
.
13.
Antohe
,
B. V.
,
Lage
,
J. L.
,
Price
,
D. C.
, and
Weber
,
R. M.
,
1997
, “
Experimental Determination of Permeability and Inertia Coefficients of Mechanically Compressed Aluminum Porous Matrices
,”
ASME J Fluids Eng.
119
, pp.
404
412
.
14.
Barak
,
A. Z.
,
1987
, “
Comments on ‘High Velocity Flow in Porous Media’
,”
Transp. Porous Media
,
2
, pp.
533
535
.
15.
Hassanizadeh
,
S. M.
, and
Gray
,
W. G.
,
1988
, “
Reply to Comments by Barak on High Velocity Flow in Porous Media
,”
Transp. Porous Media
,
3
, pp.
319
321
.
16.
Wodie
,
J.-C.
, and
Levy
,
T.
,
1991
, “
Correction non Line´are de la loi de Darcy
,”
C. R. Acad. Sci. Paris
,
312
, Se´rie II, pp.
157
161
.
17.
Mei
,
C. C.
, and
Aurialt
,
J.-L.
,
1991
, “
The Effect of Weak Inertia on Flow Through a Porous Medium
,”
J. Fluid Mech.
,
222
, pp.
647
672
.
18.
Wyckoff
,
R. D.
,
Botset
,
H. G.
,
Muskat
,
M.
, and
Reed
,
D. W.
,
1934
, “
Measurement of Permeability of Porous Media
,”
Bull. Am. Assoc. Petrol. Geol.
,
18
, pp.
161
190
.
19.
Fand
,
R. M.
,
Kim
,
B. Y. K.
,
Lam
,
A. C. C.
, and
Phan
,
R. T.
,
1987
, “
Resistance to the Flow of Fluids Through Simple and Complex Porous Media Whose Matrices are Composed of Randomly Packed Spheres
,”
ASME J. Fluids Eng.
109
, pp.
268
274
.
20.
Firdaouss
,
M.
,
Guermond
,
J.-L.
, and
Le Que´re´
,
P.
,
1997
, “
Nonlinear Corrections to Darcy’s Law at Low Reynolds Numbers
,”
J. Fluid Mech.
,
343
, pp.
331
350
.
21.
Batchelor, G. K., 1987, An Introduction to Fluid Dynamics, Cambridge University Press, (reprint of 1st edition 1967), p. 215.
22.
Bejan, A., 1984, Convection Heat Transfer, 2nd ed., Wiley, New York, pp. 99–100.
23.
Macdonald
,
I. F.
,
El-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
,
1979
, “
Flow Through Porous Media - Ergun Equation Revisited
,”
Ind. Eng. Chem. Fundam.
,
18
, pp.
199
208
.
24.
Delhomme
,
J. P.
,
1978
, “
Kriging in the Hydrosciences
,”
Adv. Water Resour.
,
1
, pp.
251
266
.
25.
Koch
,
D. L.
, and
Ladd
,
A. J. C.
,
1997
, “
Moderate Reynolds Number Flows Through Periodic and Random Arrays of Aligned Cylinders
,”
J. Fluid Mech.
,
349
, pp.
31
66
.
You do not currently have access to this content.