To simulate transitional skin friction or heat transfer, the conditionally averaged Navier-Stokes equations are used. To describe the diffusion of freestream turbulence into the boundary layer and the intermittent laminar-turbulent flow behavior during transition, a turbulence weighting factor τ is used. A transport equation is presented for this τ-factor including convection, diffusion, production, and sink terms. In combination with the conditioned Navier-Stokes equations, this leads to an accurate calculation of flow characteristics within the transitional layer. The method is validated on transitional skin friction and heat transfer measurements, respectively on a flat plate and in a linear turbine cascade.

1.
Mayle
,
R. E.
, and
Schulz
,
A.
,
1997
, “
The Path to Predicting Bypass Transition
,”
ASME J. Turbomach.
,
119
, pp.
405
411
.
2.
Gostelow
,
J. P.
, and
Blunden
,
A. R.
,
1989
, “
Investigations of Boundary Layer Transition in an Adverse Pressure Gradient
,”
ASME J. Turbomach.
,
111
, pp.
366
375
.
3.
Steelant
,
J.
, and
Dick
,
E.
,
1996
, “
Modelling of Bypass Transition with Conditioned Navier-Stokes Equations coupled to an Intermittency Equation
,”
Int. J. Numer. Methods Fluids
,
23
, pp.
193
220
.
4.
Steelant, J., and Dick, E., 1996, “Calculation of Transition in Adverse Pressure Gradient Flow by Conditioned Equations,” ASME 96-GT-160.
5.
Cho
,
R.
, and
Chung
,
M. K.
,
1992
, “
A k-ε-γ equation turbulence model
,”
J. Fluid Mech.
,
237
, pp.
301
322
.
6.
Gostelow
,
J. P.
,
Blunden
,
A. R.
, and
Walker
,
G. J.
,
1994
, “
Effects of Free-Stream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition
,”
ASME J. Turbomach.
,
116
, pp.
392
404
.
7.
Narasimha
,
R.
,
1985
, “
The Laminar-Turbulent Transition Zone in the Boundary Layer
,”
Prog. Aerosp. Sci.
,
22
, pp.
29
80
.
8.
Chen
,
K. K.
, and
Tyson
,
N. A.
,
1971
, “
Extension of Emmons’ Spot Theory to Flows on Blunt Bodies
,”
AIAA J.
,
9
, pp.
821
825
.
9.
Boyle, R. J., and Simon, F. F., 1996, “Mach Number Effects on Turbine Blade Transition Length Prediction,” ASME-Paper 98-GT-367.
1.
Lee
,
S.
,
Lele
,
S. K.
, and
Moin
,
P.
,
1993
, “
Isotropic Turbulence Interacting with a Weak Shock Wave
,”
J. Fluid Mech.
,
251
, pp.
533
562
;
2.
corrigendum
264
:
373
374
,
1994
.
1.
Lee
,
S.
,
Lele
,
S. K.
, and
Moin
,
P.
,
1997
, “
Interaction of Isotropic Turbulence with Shock Waves: Effect of Shock Strength
,”
J. Fluid Mech.
,
340
, pp.
225
247
.
2.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
3.
Savill, A. M., 1992, “A synthesis of T3 Test Case Predictions,” Numerical Simulation of Unsteady Flows and Transition to Turbulence, O. P. et al., ed., Cambridge University Press, pp. 404–442.
4.
Arts, T., de Rouvroit, L. M., and Rutherford, A. W., 1990, “Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade,” Tech. Rep. TN-174, Von Karman Institute.
5.
Roach
,
P. E.
,
1989
, “
The Generation of Nearly Isotropic Turbulence by means of Grids
,”
Heat Fluid Flow
,
8
, No.
2
, pp.
82
92
.
6.
Steelant
,
J.
, and
Dick
,
E.
,
1994
, “
A Multigrid Method for the Compressible Navier-Stokes Equations Coupled to the k−ε Turbulence Equations
,”
Int. J. Numer. Methods Heat Fluid Flow
,
4
, No.
2
, pp.
99
113
.
7.
Keller, F. J., and Wang, T., 1993, “Flow and Thermal Structures in Heated Transitional Boundary Layers with and without Streamwise acceleration,” Tech. rep., Clemson University, Department of Mechanical Engineering.
8.
Mayle
,
R. E.
,
Dullenkopf
,
K.
, and
Schulz
,
A.
,
1998
, “
The Turbulence that Matters
,”
ASME J. Turbomach.
,
120
, pp.
402
409
.
9.
Volino
,
R. J.
,
1998
, “
A New Model for Free-Stream Turbulence Effects on Boundary Layers
,”
ASME J. Turbomach.
,
120
, pp.
613
620
.
You do not currently have access to this content.