The finite-element program, ANSYS/FLOTRAN, has been enhanced at Release 5.7 to predict free surface flows with surface tension in complex geometries. The two-dimensional incompressible Navier-Stokes and energy equations are solved in both Cartesian and axisymmetric coordinate systems. At Release 5.6, the free surface capabilities have been incorporated into ANSYS/FLOTRAN using the CLEAR-VOF algorithm. The main contribution of this work is to implement a surface tension model into ANSYS/FLOTRAN to study free surface flows with surface tension in complex geometries. Both normal and tangential components of surface tension forces are modeled at the interface through a continuum surface force (CSF) model. This new algorithm is first validated with two model problems: a droplet in equilibrium and an oscillating droplet. For the first problem, the computed pressure value is compared with the theoretical value, whereas for the second problem, the oscillation frequency is compared with both the analytical solution and experimental data. The computer program is then applied to thermocapillary flows in two types of trapezoidal cavities to investigate the interesting flow and heat transfer characteristics. Systematic calculations are performed to study the influence of Marangoni number, capillary number and static contact angle on Marangoni convection.

1.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
, pp.
201
225
.
2.
Ashgriz
,
N.
, and
Poo
,
J. Y.
,
1991
, “
FLAIR: Flux Line-Segment Model for Advection and Interface Reconstruction
,”
J. Comput. Phys.
,
93
, pp.
449
468
.
3.
Kim
,
S.-O.
, and
No
,
H. C.
,
1998
, “
Second-Order Model for Free Surface Convection and Interface Reconstruction
,”
Int. J. Numer. Methods Fluids
,
26
, pp.
79
100
.
4.
Barbat, T., Ashgriz, N., and Wang, G., 2002, “CLEAR-VOF and Its Application to Free Surface Flows,” to be submitted.
5.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
, pp.
335
354
.
6.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York.
7.
Zienkiewicz, O. C., and Taylor R. L., 1989, The Finite Element Method, Vol. 1, 4th Edition, McGraw-Hill, London.
8.
Heinrich, J. C., and Pepper, D. W., 1998, Intermediate Finite Element Method: Fluid Flow and Heat Transfer Applications, Taylor & Francis, Washington, DC.
9.
Brooks
,
A. N.
, and
Hughes
,
J. T. R.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convective Dominated Flows with Particular Emphasis of the Incompressible Navier-Stokes Equations
,”
Computer Methods for Applied Mechanics and Engineering
,
32
, pp.
199
219
.
10.
Rice
,
J. G.
, and
Schnipk
,
R. J.
,
1986
, “
An Equal-Order Velocity-Pressure Formulation that does not exhibit spurious pressure modes
,”
Computer Methods in Applied Mechanics and Engineering
,
58
, pp.
135
149
.
11.
Wang, G., 2001, “A Fast and Robust Variant of the SIMPLE Algorithm for Finite-Element Simulations of Incompressible Flows,” Computational Fluid and Solid Mechanics, K. J. Bathe ed., Elsevier Science Ltd, Kidlington, UK, 2, pp. 1014–1016.
12.
Kothe
,
D. B.
, and
Mjolsness
,
R. C.
,
1992
, “
RIPPLE: A New Model for Incompressible Flows with Free Surfaces.
AIAA J.
,
30
, pp.
2694
2700
.
13.
Richards
,
J. R.
,
Lenhoff
,
A. M.
, and
Beris
,
A. N.
,
1994
, “
Dynamic breakup of liquid-liquid jets
,”
Phys. Fluids
,
8
, pp.
2640
2655
.
14.
Sasmal
,
G. P.
, and
Hochstei
,
J. I.
,
1994
, “
Marangoni Convection with a Curved and Deforming Free Surface in a Cavity
,”
ASME J. Fluids Eng.
,
116
, pp.
577
582
.
15.
Kothe, D. B., Rider, W. J., Mosso, S. J., Brock, J. S., and Hochstein, J. I., 1996, “Volume Tracking of Interfaces Having Surface Tension in Two and Three Dimensions,” AIAA Paper 96-0859, presented at the 34rd Aerospace Sciences Meeting and Exhibit.
16.
Lafaurie
,
B.
,
Nardone
,
C.
,
Scardovelli
,
R.
,
Zaleski
,
S.
, and
Zanetti
,
G.
,
1994
, “
Modelling Merging and Fragmentation in Multiphase Flows with SURFER
,”
J. Comput. Phys.
,
113
, pp.
134
147
.
17.
Rayleigh
,
J. W. S.
,
1879
, “
On the Capillary Phenomena of Jets
,”
Proc. R. Soc. London
,
29
, p.
71
71
.
18.
Prosperetti
,
A.
,
1980
, “
Free Oscillations of Drops and Bubbles: The Initial-Value Problem
,”
J. Fluid Mech.
,
100
, p.
333
333
.
19.
Basaran
,
O. A.
,
1992
, “
Nonlinear Oscillations of Viscous Liquid Drops
,”
J. Fluid Mech.
,
241
, pp.
169
198
.
20.
Mashayek
,
F.
, and
Ashgriz
,
N.
,
1995
, “
A Spline-Flux Method for Simulating Free Surface Flows
,”
J. Comput. Phys.
,
122
, pp.
367
379
.
21.
Mashayek
,
F.
, and
Ashgriz
,
N.
,
1998
, “
Nonlinear Oscillations of Drops with Internal Circulation
,”
Phys. Fluids
,
10
, pp.
1071
1082
.
22.
So¨derkvist, J., 1986, private communication.
23.
Wang, G., 2000, “Finite Element Simulations of Gas-Liquid Flows with Surface Tension,” Proc. the ASME Fluids Engineering Division-2000, T. J. O’Hern, ed., FED 253, pp. 161-167.
24.
Zebib
,
A.
,
Homsy
,
G. M.
, and
Meiburg
,
E.
,
1985
, “
High Marangoni Number Convection in a Square Cavity
,”
Phys. Fluids
,
12
, pp.
3467
3476
.
25.
Chen
,
J. C.
,
Sheu
,
J. C.
, and
Jwu
,
S. S.
,
1990
, “
Numerical Computation of Thermocapillary Convection in a Rectangular Cavity
,”
Numer. Heat Transfer
,
17
, pp.
287
308
.
You do not currently have access to this content.