Numerical simulation is performed for stagnating turbulent flows of impinging and countercurrent jets by the Reynolds stress model (RSM). Results are compared with those of the kε model and available data to assess the flow characteristics and turbulence models. Three variants of the RSM tested are those of Gibson and Launder (GL), Craft and Launder (GL-CL) and Speziale, Sarkar and Gatski (SSG). As is well known, the kε model significantly overestimates turbulent kinetic energy near the wall. Although the RSM is superior to the kε model, it shows considerable difference according to how the redistributive pressure-strain term is modeled. Results of the RSM for countercurrent jets are improved with the modified coefficients for the dissipation rate, Cε1 and Cε2, suggested by Champion and Libby. Anisotropic states of the stress near the stagnation region are assessed in terms of an anisotropy invariant map (AIM).

1.
Craft
,
T. J.
,
Graham
,
L. J. W.
, and
Launder
,
B. E.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment-II. An Examination of the Performance of Four Turbulence Models
,”
Int. J. Heat Mass Transf.
,
36
(
10
), pp.
2685
2697
.
2.
Dianat
,
M.
,
Fairweather
,
M.
, and
Jones
,
W. P.
,
1996
, “
Predictions of Axisymmetric and Two-Dimensional Impinging Turbulent Jets
,”
Int. J. Heat Fluid Flow
,
17
, pp.
530
538
.
3.
Dianat
,
M.
,
Fairweather
,
M.
, and
Jones
,
W. P.
,
1996
, “
Reynolds Stress Closure Applied to Axisymmetric Impinging Turbulent Jets
,”
Theor. Comput. Fluid Dyn.
,
8
, pp.
435
447
.
4.
Craft, T. J., and Launder, B. E., 1991, “Computation of Impinging Flows using Second-Moment Closures,” 8th Symp. on Turbulent Shear Flows, 8–5.
5.
Parneix
,
S.
,
Behnia
,
M.
, and
Durbin
,
P. A.
,
1999
, “
Predictions of Turbulent Heat Transfer in an Axisymmetric Jet Impinging on a Heated Pedestal
,”
ASME J. Heat Transfer
,
121
, pp.
43
49
.
6.
Behnia
,
M.
,
Parneix
,
S.
,
Shabany
,
Y.
, and
Durbin
,
P. A.
,
1999
, “
Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets
,”
Int. J. Heat Fluid Flow
,
20
, pp.
1
9
.
7.
Kostiuk
,
L. W.
,
Bray
,
K. N. C.
, and
Cheng
,
R. K.
,
1993
, “
Experimental Study of Premixed Turbulent Combustion in Opposed Streams. Part II-Reacting Flow Field and Extinction
,”
Combust. Flame
,
92
, pp.
396
409
.
8.
Cho, P., Law, C. K., Hertzberg, J. R., and Cheng, R. K., 1986, “Structure and Propagation of Turbulent Premixed Flames Stabilized in a Stagnation Flow,” 21th Symp. (international) on Combustion, pp. 1493–1499.
9.
Escudie
,
D.
,
Haddar
,
E.
, and
Brun
,
M.
,
1999
, “
Influence of Strain Rate on a Premixed Turbulent Flame Stabilized in a Stagnating Flow
,”
Exp. Fluids
,
27
, pp.
533
541
.
10.
Lee
,
E.
,
Choi
,
C. R.
, and
Huh
,
K. Y.
,
1998
, “
Application of the Coherent Flamelet Model to Counterflow Turbulent Premixed Combustion and Extinction
,”
Combust. Sci. Technol.
,
138
, pp.
1
25
.
11.
Gutmark
,
E.
,
Wolfshtein
,
M.
, and
Wygnanski
,
I.
,
1978
, “
The Plane Turbulent Impinging Jet
,”
J. Fluid Mech.
,
88
, Part A, pp.
737
756
.
12.
Cooper
,
D.
,
Jackson
,
D. C.
,
Launder
,
B. E.
, and
Liao
,
G. X.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment-I. Flow-Field Experiments
,”
Int. J. Heat Mass Transf.
,
36
(
10
), pp.
2675
2684
.
13.
Ueda
,
T.
,
Imaizumi
,
H.
,
Mizomoto
,
M.
, and
Shepherd
,
I. G.
,
1997
, “
Velocity Statistics along the Stagnation Line of an Axisymmetric Stagnating Turbulent Flow
,”
Exp. Fluids
,
22
, pp.
473
481
.
14.
Nishino
,
K.
,
Samada
,
M.
,
Kasuya
,
K.
, and
Torii
,
K.
,
1996
, “
Turbulence Statistics in the Stagnation Region of an Axisymmetric Impinging Jet Flow
,”
Int. J. Heat Fluid Flow
,
17
, pp.
193
201
.
15.
Kostiuk
,
L. W.
,
Bray
,
K. N. C.
, and
Cheng
,
R. K.
,
1993
, “
Experimental Study of Premixed Turbulent Combustion in Opposed Streams. Part I-Nonreacting Flow Field
,”
Combust. Flame
,
92
, pp.
377
395
.
16.
Mounaim-Rousselle, C., and Gokalp, I., 1994, “Strain Effects on the Structure of Counterflowing Turbulent Premixed Flames,” 25th Symp. (international) on Combustion, pp. 1199–1205.
17.
Ashforth-Frost
,
S.
, and
Jambunathan
,
K.
,
1996
, “
Numerical Prediction of Semi-Confined Jet Impingement and Comparison with Experimental Data
,”
Int. J. Numer. Methods Fluids
,
23
, pp.
295
306
.
18.
Rabbitt
,
M. J.
,
1997
, “
Some Validation of Standard, Modified and Non-linear k−ε Turbulence Models
,”
Int. J. Numer. Methods Fluids
,
24
, pp.
965
986
.
19.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure-Strain Correlation of Turbulence: an Invariant Dynamic Systems Approach
,”
J. Fluid Mech.
,
227
, pp.
245
272
.
20.
Basara
,
B.
, and
Younis
,
B. A.
,
1995
, “
Assessment of the SSG Pressure-Strain Model in Two-Dimensional Turbulent Separated Flows
,”
Appl. Sci. Res.
,
55
, pp.
39
61
.
21.
Younis
,
B. A.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1996
, “
Assessment of the SSG Pressure-Strain Model in Free Turbulent Jets with and without Swirl
,”
ASME J. Fluids Eng.
,
118
, pp.
800
809
.
22.
Champion
,
M.
, and
Libby
,
P. A.
,
1994
, “
Reynolds Stress Description of Opposed and Impinging Turbulent Jets II. Axisymmetric Jets Impinging on Nearby Walls
,”
Phys. Fluids
,
6
(
5
), pp.
1805
1819
.
23.
Champion
,
M.
, and
Libby
,
P. A.
,
1991
, “
Asymptotic Analysis of Stagnating Turbulent Flows
,”
AIAA J.
,
29
(
1
), pp.
16
24
.
24.
Champion
,
M.
, and
Libby
,
P. A.
,
1993
, “
Reynolds Stress Description of Opposed and Impinging Turbulent Jets. Part I. Closely Spaced Opposed Jets
,”
Phys. Fluids A
,
5
(
1
), pp.
203
216
.
25.
Bray
,
K. N. C.
,
Champion
,
M.
, and
Libby
,
P. A.
,
2000
, “
Premixed Flames in Stagnating Turbulence Part IV: A New Theory for the Reynolds Stresses and Reynolds Fluxes Applied to Impinging Flows
,”
Combust. Flame
,
120
, pp.
1
18
.
26.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
, pp.
491
511
.
27.
Daly
,
B. J.
, and
Harlow
,
F. H.
,
1970
, “
Transport Equations in Turbulence
,”
Phys. Fluids
,
13
, pp.
2634
2649
.
28.
Rotta
,
J. C.
,
1951
, “
Statistische Theorie Nichthomogener Turbulenz
,”
Z. Phys.
,
129
, pp.
547
572
.
29.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transf.
,
15
, pp.
1787
1805
.
30.
Libby, P. A., and Williams, F. A., 1993, Turbulent Reacting Flows, Academic Press, pp. 309–374.
31.
Van Leer
,
B.
,
1974
, “
Towards the Ultimate Conservative Difference Scheme. II: Monotonicity and Conservation Combined in a Second-Order Scheme
,”
J. Comput. Phys.
,
14
, pp.
361
370
.
32.
FLUENT Users’ Manual Version 5, Fluent Europe Ltd. Sheffield, UK, 1998.
33.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
,
Lett. Heat Mass Transfer
,
1
, pp.
131
138
.
34.
Chen
,
J. C.
, and
Lin
,
C. A.
,
1999
, “
Computations of Strongly Swirling Flows with Second Moment Closures
,”
Int. J. Numer. Methods Fluids
,
30
, pp.
493
508
.
You do not currently have access to this content.