In this paper we present direct numerical simulations of monodisperse and polydisperse suspensions of non-Brownian particles sedimenting at low Reynolds number. We describe a scheme to generate ergodic ensembles of random particulate systems and a numerical procedure for computing interactions among spherical particles based on Ewald summation technique for hydrodynamic mobility tensors. From the generation process truly random both monodisperse and multimodal size distributions of particles were obtained for dilute and moderate densities based on a minimum energy criterion. Concerned with computations of the Ewald sums our numerical procedure drastically reduces the CPU simulation time providing results of the hindered settling function in good agreement with available experimental data and asymptotic results for ordered and random periodic arrays of particles. We show new computer simulations with no flux boundary perpendicular to gravity and periodic boundary conditions in horizontal direction. The simulations reproduce the experimental correlation-time and anisotropy of the velocity fluctuations, but have the magnitude of these fluctuations increasing proportional to the size of the system.

1.
Davis
,
R. H.
, and
Acrivos
,
A.
,
1985
, “
Sedimentation of Noncolloidal Particles at Low Reynolds Number
,”
Annu. Rev. Fluid Mech.
,
17
(
91
), pp.
91
118
.
2.
Richardson
,
J. F.
, and
Zaki
,
W. N.
,
1954
, “
Sedimentation and Fluidization: I
,”
Trans. Inst. Chem. Eng.
,
32
(
35
), pp.
35
52
.
3.
Batchelor
,
G. K.
,
1972
, “
Sedimentation in a Dilute Dispersion of Spheres
,”
J. Fluid Mech.
,
52
, pp.
245
268
.
4.
Batchelor
,
G. K.
,
1982
, “
Sedimentation in a Dilute Polydisperse System of Interacting Spheres. Part 1. General Theory
,”
J. Fluid Mech.
,
119
, pp.
379
408
.
5.
Davis
,
R. H.
,
1996
, “
Hydrodynamic Diffusion of Suspended Particles: A Symposium
,”
J. Fluid Mech.
,
310
, pp.
325
335
.
6.
Guazzelli
,
E.
,
2001
, “
Evolution of Particle-Velocity Correlations in Sedimentation
,”
Phys. Fluids
,
13
(
6
), pp.
1537
1540
.
7.
Caflisch
,
R. E.
, and
Luke
,
J. H. C.
,
1985
, “
Variance in the Sedimentation Speed of a Suspension
,”
Phys. Fluids
,
28
(
3
), pp.
759
760
.
8.
Hinch, E. J., 1988, Disorder and Mixing, Kluwer Academic, Dordrecht, pp. 153–161, Chap. 9.
9.
Koch
,
D. L.
, and
Shaqfeh
,
E. S. G.
,
1991
, “
Screening in Sedimenting Suspensions
,”
J. Fluid Mech.
,
224
, pp.
275
303
.
10.
Koch
,
D. L.
,
1992
, “
Anomalous Diffusion of Momentum in a Dilute Gas-Solid Suspension
,”
Phys. Fluids
,
4
(
7
), pp.
1337
1346
.
11.
Cunha, F. R., 1995, “Hydrodynamic Dispersion in Suspensions,” Ph.D. Thesis, Department of Applied Mathematics and Theoretical Physics, Cambridge University, Cambridge, UK.
12.
Cunha
,
F. R.
,
1997
, “
On the Fluctuations in a Random Suspension of Sedimenting Particles
,”
J. Braz. Soc. Mech. Sci.
,
19
(
4
), pp.
474
495
.
13.
Brenner
,
M. P.
,
1999
, “
Screening Mechanisms in Sedimentation
,”
Phys. Fluids
,
11
(
4
), pp.
754
772
.
14.
Koch
,
D. L.
,
1994
, “
Hydrodynamic Diffusion in a Suspension of Sedimenting Point Particles With Periodic Boundary Conditions
,”
Phys. Fluids
,
6
(
9
), pp.
2894
2900
.
15.
Ladd
,
A. J. C.
,
1993
, “
Dynamical Simulation of Sedimenting Spheres
,”
Phys. Fluids
,
5
(
2
), pp.
299
310
.
16.
Ladd
,
A. J. C.
,
1997
, “
Sedimentation of Homogeneous Suspensions of Non-Brownian Spheres
,”
Phys. Fluids
,
9
(
3
), pp.
491
499
.
17.
Cunha
,
F. R.
,
Rosa
,
O. S.
, and
Sousa
,
A. J.
,
2001
, “
Do We Understand Hydrodynamic Dispersion in Sedimenting Suspensions?
J. Braz. Soc. Mech. Sci.
,
23
(
4
), pp.
379
399
.
18.
Nicolai
,
H.
, and
Guazzelli
,
E.
,
1995
, “
Effect of the Vessel Size on the Hydrodynamic Diffusion of Sedimenting Spheres
,”
Phys. Fluids
,
7
(
1
), pp.
3
5
.
19.
Se´gre
,
P. N.
,
Herbolzeimer
,
E.
, and
Chaikin
,
P. M.
,
1997
, “
Long-Range Correlations in Sedimentation
,”
Phys. Rev. Lett.
,
79
(
13
), pp.
2574
2577
.
20.
Kalthoff
,
W.
,
Schwarzer
,
S.
,
Ristow
,
G.
et al.
,
1996
, “
On the Application of a Novel Algorithm to Hydrodynamic Diffusion and Velocity Fluctuations in Sedimenting Systems
,”
Int. J. Mod. Phys. C
,
7
(
4
), pp.
543
561
.
21.
Davis
,
R. H.
, and
Hassen
,
M. A.
,
1988
, “
Spreading of the Interface at the Top of a Slightly Polydisperse Sedimenting Suspension
,”
J. Fluid Mech.
,
196
, pp.
107
134
.
22.
Lee
,
S.
,
Jang
,
J.
,
Choi
,
C.
, and
Lee
,
T.
,
1992
, “
Combined Effect of Sedimentation Velocity Fluctuation and Self-Sharpening on Interface Broadening
,”
Phys. Fluids
,
4
(
12
), p.
2601
2606
.
23.
Ham
,
J. M.
, and
Homsy
,
G. M.
,
1988
, “
Hindered Settling and Hydrodynamic Dispersion in Quiescent Sedimenting Suspensions
,”
Int. J. Multiphase Flow
,
14
(
5
), pp.
533
546
.
24.
Xue
,
J.-Z.
,
Herboltzheimer
,
E.
,
Rutgers
,
M. A.
,
Russel
,
W. B.
, and
Chaikin
,
P. M.
,
1992
, “
Diffusion, Dispersion, and Settling of Hard Spheres
,”
Phys. Rev. Lett.
,
69
(
11
), pp.
1715
1718
.
25.
Nicolai
,
H.
,
Herzhaft
,
B.
,
Hinch
,
E. J.
,
Oger
,
L.
, and
Guazzelli
,
E.
,
1995
, “
Particle Velocity Fluctuations and Hydrodynamic Self-Diffusion of Sedimenting Non-Brownian Spheres
,”
Phys. Fluids
,
7
(
1
), pp.
12
23
.
26.
Cunha
,
F. R.
, and
Hinch
,
E. J.
,
1996
, “
Shear-Induced Dispersion in a Dilute Suspension of Rough Spheres
,”
J. Fluid Mech.
,
309
, pp.
211
223
.
27.
Leighton
,
D. T.
, and
Acrivos
,
A.
,
1987
, “
The Shear-Induced Migration of Particles in Concentrated Suspensions
,”
J. Fluid Mech.
,
181
, pp.
415
439
.
28.
Beenakker
,
C. W. J.
,
1986
, “
Ewald Sum of the Rotne-Prager Tensor
,”
J. Chem. Phys.
,
85
(
3
), pp.
1581
1582
.
29.
Nijboer
,
B. R. A.
, and
De Wette
,
F. W.
,
1957
, “
On the Calculation of Lattice Sums
,”
Physica
,
23
, pp.
309
321
.
30.
Rotne
,
J.
, and
Prager
,
S.
,
1969
, “
Variational Treatment of Hydrodynamic Interaction in Polymers
,”
J. Chem. Phys.
,
50
(
11
), pp.
4831
4837
.
31.
Brady
,
J. F.
, and
Bossis
,
G.
,
1988
, “
Stokesian Dynamics
,”
Annu. Rev. Fluid Mech.
,
20
, pp.
111
157
.
32.
Kim, S., and Karrila, S. J., 1991, Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann.
33.
Blake
,
J. R.
,
1971
, “
A Note on the Image System for a Stokeslet in a No-Slip Boundary
,”
Proc. Cambridge Philos. Soc.
,
70
, pp.
303
310
.
34.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.
35.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in Fortran 77, 1, Cambridge University Press, Cambridge, UK.
36.
Sierou
,
A.
, and
Brady
,
J. F.
,
2001
, “
Accelerated Stokesian Dynamics Simulations
J. Fluid Mech.
,
448
, pp.
115
146
.
37.
Ladd
,
A. J. C.
,
1994
, “
Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation. Part 2. Numerical Results
,”
J. Fluid Mech.
,
271
, pp.
311
339
.
38.
Mo
,
G.
, and
Sangani
,
A. S.
,
1994
, “
A Method for Computing Stokes Flow Interactions Among Spherical Objects and Its Application to Suspensions of Drops and Porous Particles
,”
Phys. Fluids
,
6
(
5
), pp.
1637
1652
.
39.
Saffman
,
P. G.
,
1973
, “
On the Settling Speed of Free and Fixed Suspensions
,”
Stud. Appl. Math.
,
52
(
2
), pp.
115
127
.
40.
Sangani
,
A. S.
, and
Acrivos
,
A.
,
1982
, “
Slow Flow Through a Periodic Array of Spheres
,”
Int. J. Multiphase Flow
,
8
(
4
), pp.
343
360
.
41.
Brady
,
J. F.
, and
Durlofsky
,
L. J.
,
1988
, “
The Sedimentation Rate of Disordered Suspensions
,”
Phys. Fluids
,
31
(
4
), pp.
717
727
.
42.
Davis
,
R. H.
, and
Gecol
,
H.
,
1994
, “
Hindered Settling Function with No Empirical Parameters for Polydisperse Suspensions
,”
AIChE J.
,
40
(
3
), pp.
570
575
.
43.
Batchelor
,
G. K.
, and
Wen
,
C. S.
,
1982
, “
Sedimentation in a Dilute Polydisperse System of Interacting Spheres. Part 2. Numerical Results
,”
J. Fluid Mech.
,
124
, pp.
495
528
.
You do not currently have access to this content.