A numerical simulation for a filling process in an open tank is performed in this paper. A single set of governing equations is employed for the entire physical domain covering both water and air regions. The great density jump and the surface tension existing at the free surface are properly handled with the extended weighting function scheme and the NAPPLE algorithm. There is no need to smear the free surface. Through the use of a properly defined boundary condition, the method of “extrapolated velocity” is seen to provide accurate migrating velocity for the free surface, especially when the water front hits a corner or a vertical wall. In the present numerical procedure, the unsteady term of the momentum equation is discretized with an implicit scheme. Large time-steps thus are allowed. The numerical results show that when the water impinges upon a corner, a strong pressure gradient forms in the vicinity of the stagnation point. This forces the water to move upward along the vertical wall. The water eventually falls down and generates a gravity wave. The resulting free surface evolution is seen to agree well with existing experimental data. Due to its accuracy and simplicity, the present numerical method is believed to have applicability for viscous free-surface flows in industrial and environmental problems such as die-casting, cutting with water jet, gravity wave on sea surface, and many others.

1.
Gilotte
,
P.
,
Huynh
,
L. V.
,
Etay
,
J.
, and
Hamar
,
R.
,
1995
, “
Shape of the Free Surfaces of the Jet in Mold Casting Numerical Modeling and Experiments
,”
ASME J. Eng. Mater. Technol.
,
17
, pp.
82
85
.
2.
Bruschke
,
M. V.
, and
Advani
,
S. G.
,
1994
, “
A Numerical Approach to Model Non-Isothermal Viscous Flow Through Fibrous Media With Free Surfaces
,”
Int. J. Numer. Methods Fluids
,
19
, pp.
575
603
.
3.
Maier
,
R. S.
,
Rohaly
,
T. F.
,
Advani
,
S. G.
, and
Fickie
,
K. D.
,
1996
, “
A Fast Numerical Method for Isothermal Resin Transfer Mold Filling
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
1405
1417
.
4.
Matsuhiro
,
I.
,
Shiojima
,
T.
,
Shimazaki
,
Y.
, and
Daiguji
,
H.
,
1990
, “
Numerical Analysis of Polymer Injection Moulding Process Using Finite Element Method With Marker Particles
,”
Int. J. Numer. Methods Eng.
,
30
, pp.
1569
1576
.
5.
Zaidi
,
K.
,
Abbes
,
B.
, and
Teodosiu
,
C.
,
1996
, “
Finite Element Simulation of Mold Filling Using Marker Particles and k-ε Model of Turbulence
,”
Comput. Methods Appl. Mech. Eng.
,
134
, pp.
241
247
.
6.
Sato
,
T.
, and
Richardson
,
S. M.
,
1994
, “
Numerical Simulation Method for Viscoelastic Flows With Free Surfaces—Fringe Element Generation Method
,”
Int. J. Numer. Methods Fluids
,
19
, pp.
555
574
.
7.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
, pp.
201
225
.
8.
Ramshaw
,
J.
, and
Trapp
,
J.
,
1976
, “
A Numerical Technique for Low Speed Homogeneous Two-Phase Flow With Sharp Interface
,”
J. Comput. Phys.
,
21
, pp.
438
453
.
9.
Chen
,
C. W.
,
Li
,
C. R.
,
Han
,
T. H.
,
Shei
,
C. T.
,
Hwang
,
W. S.
, and
Houng
,
C. M.
,
1994
, “
Numerical Simulation of Filling Pattern for an Industrial Die Casting and Its Comparison With the Defects Distribution of an Actual Casting
,”
Trans. Am. Found. Soc.
,
104
, pp.
139
146
.
10.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
,
100
, pp.
25
37
.
11.
Pericleous
,
K. A.
,
Chan
,
K. S.
, and
Cross
,
M.
,
1995
, “
Free Surface Flow and Heat Transfer in Cavities: The SEA Algorithm
,”
Numer. Heat Transfer
,
27B
, pp.
487
507
.
12.
Wu, J., Yu, S. T., and Jiang, B. N., 1996, “Simulation of Two-Fluid Flows by the Least-Square Finite Element Methods Using a Continuum Surface Tension Model,” NASA CR-202314, Lewis Research Center, Cleveland, OH.
13.
Sussman
,
M.
,
Fatemi
,
E.
,
Smereka
,
P.
, and
Osher
,
S.
,
1998
, “
An Improved Level Set Method for Incompressible Two-Phase Flows
,”
Comput. Fluids
,
27
, pp.
663
680
.
14.
Hetu
,
J.-F.
, and
Ilinca
,
F.
,
1999
, “
A Finite Element Method for Casting Simulations
,”
Numer. Heat Transfer, Part A
,
36A
, pp.
657
679
.
15.
Pichelin
,
E.
, and
Coupez
,
T.
,
1999
, “
A Taylor Discontinuous Galerkin Method for the Thermal Solution in 3D Mold Filling
,”
Comput. Methods Appl. Mech. Eng.
,
178
, pp.
153
169
.
16.
Pichelin
,
E.
, and
Coupez
,
T.
,
1998
, “
Finite Element Solution of the 3D Mold Filling Problem for Viscous Incompressible Fluid
,”
Comput. Methods Appl. Mech. Eng.
,
163
, pp.
359
371
.
17.
Chan
,
K. S.
,
Pericleous
,
K.
, and
Cross
,
M.
,
1991
, “
Numerical Simulation of Flows Encountered During Mold-Filling
,”
Appl. Math. Model.
,
15
, pp.
624
631
.
18.
van Leer
,
B.
,
1977
, “
Towards the Ultimate Conservative Difference Scheme. IV. A New Approach to Numerical Convection
,”
J. Comput. Phys.
,
23
, pp.
276
299
.
19.
Dhatt
,
G.
,
Gao
,
D. M.
, and
Cheikh
,
A. B.
,
1990
, “
A Finite Element Simulation of Metal Flow in Moulds
,”
Int. J. Numer. Methods Eng.
,
30
, pp.
821
831
.
20.
Lee
,
S. L.
, and
Sheu
,
S. R.
,
2001
, “
A New Numerical Formulation for Incompressible Viscous Free Surface Flow Without Smearing the Free Surface
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1837
1848
.
21.
Lee
,
S. L.
, and
Tzong
,
R. Y.
,
1992
, “
Artificial Pressure for Pressure-Linked Equation
,”
Int. J. Heat Mass Transfer
,
35
, pp.
2705
2716
.
22.
Martin
,
J. C.
, and
Moyce
,
W. J.
,
1952
, “
An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane
,”
Philos. Trans. R. Soc. London, Ser. A
,
244A
, pp.
312
324
.
23.
Sarpkaya
,
T.
,
1996
, “
Vorticity, Free Surface, and Surfactants
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
83
128
.
24.
Tsai
,
W. T.
, and
Yue
,
D. K. P.
,
1996
, “
Computation of Nonlinear Free-Surface Flows
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
249
278
.
25.
Lee
,
S. L.
,
1989
, “
A Strongly-Implicit Solver for Two-Dimensional Elliptic Differential Equations
,”
Numer. Heat Transfer, Part B
,
16B
, pp.
161
178
.
26.
Hwang, W.-S., and Stoehr, R. A., 1988, “Modeling of Fluid Flow,” Metal Handbook, 9th Ed., ASM International, Metals Park, OH, 15, pp. 867–876.
You do not currently have access to this content.