An analysis is made of the flow of an electrically conducting fluid in a channel with constrictions in the presence of a uniform transverse magnetic field. A solution technique for governing magnetohydrodynamic (MHD) equations in primitive variable formulation is developed. A coordinate stretching is used to map the long irregular geometry into a finite computational domain. The governing equations are discretized using finite difference approximations and the well-known staggered grid of Harlow and Welch is used. Pressure Poisson equation and pressure-velocity correction formulas are derived and solved numerically. It is found that the flow separates downstream of the constriction. With increase in the magnetic field, the flow separation zone diminishes in size and for large magnetic field, the separation zone disappears completely. Wall shear stress increases with increase in the magnetic field strength. It is also found that for symmetrically situated constrictions on the channel walls, the critical Reynolds number for the flow bifurcation (i.e., flow asymmetry) increases with increase in the magnetic field.

1.
Lee
,
J. S.
, and
Fung
,
Y. C.
,
1970
, “
Flow in Locally Constricted Tubes at Low Reynolds Number
,”
ASME J. Appl. Mech.
,
37
, pp.
9
16
.
2.
Lee
,
T. S.
,
1994
, “
Steady Laminar Fluid Flow Through a Variable Constrictions in Vascular Tube
,”
ASME J. Fluids Eng.
,
116
, pp.
66
71
.
3.
Cheng
,
R. T.
,
1972
, “
Numerical Solution of the Navier-Stokes Equations by the Finite-Element Method
,”
Phys. Fluids
,
15
, pp.
2098
2105
.
4.
Vradis
,
G.
,
Zalak
,
V.
, and
Bentson
,
J.
,
1992
, “
Simultaneous Variable Solutions of the Incompressible Steady Navier-Stokes Equations in Curvilinear Coordinate Systems
,”
ASME J. Fluids Eng.
,
114
, pp.
299
305
.
5.
Shyy
,
W.
, and
Sun
,
C. S.
,
1993
, “
Development of a Pressure-Correction/Staggered-Grid Based Multigrid Solver for Incompressible Recirculating Flows
,”
Comput. Fluids
,
22
, pp.
51
76
.
6.
Huang
,
H.
, and
Seymour
,
B. R.
,
1995
, “
A Finite Difference Method for Flow in a Constricted Channel
,”
Comput. Fluids
,
24
(
2
), pp.
153
160
.
7.
Durst
,
F.
,
Melling
,
A.
, and
Whitelaw
,
J. H.
,
1974
, “
Low Reynolds Number Flow Over a Plane Symmetrical Sudden Expansion
,”
J. Fluid Mech.
,
64
, pp.
111
128
.
8.
Cherdron
,
W.
,
Durst
,
F.
, and
Whitelaw
,
J. H.
,
1978
, “
Asymmetric Flows and Instabilities in Symmetric Ducts With Sudden-Expansion
,”
J. Fluid Mech.
,
84
, pp.
13
31
.
9.
Sobey
,
I. J.
,
1985
, “
Observation of Waves During Oscillatory Channel Flow
,”
J. Fluid Mech.
,
151
, pp.
395
406
.
10.
Durst
,
F.
,
Pereira
,
J. C.
, and
Tropea
,
C.
,
1993
, “
The Plane Symmetric Sudden-Expansion Flow at Low Reynolds Numbers
,”
J. Fluid Mech.
,
248
, pp.
567
581
.
11.
Fearn
,
R. M.
,
Mullin
,
T.
, and
Cliffe
,
K. A.
,
1990
, “
Nonlinear Flow Phenomena in a Symmetric Sudden Expansion
,”
J. Fluid Mech.
,
211
, pp.
595
608
.
12.
Schlichting, H., 1968, Boundary Layer Theory, 6th Ed., translated by J. Kestin, McGraw-Hill, New York.
13.
Gad-el-Hak
,
M.
, and
Bushnell
,
D. M.
,
1991
, “
Separation Control: Review
,”
ASME J. Fluids Eng.
,
113
, pp.
5
30
.
14.
Barnothy, M. F., ed., 1964, Biological Effects of Magnetic Fields, Vol. 1, Plenum Press, New York.
15.
Vardanyan
,
V. A.
,
1973
, “
Effect of Magnetic Field on Blood Flow
,”
Biofizika
,
18
, pp.
491
496
.
16.
Pal
,
B.
,
Misra
,
J. C.
, and
Gupta
,
A. S.
,
1996
, “
Steady Hydromagnetic Flow in a Slowly Varying Channel
,”
Proc. Natl. Inst. Sci. India, Part A
,
66
(A), III, pp.
247
262
.
17.
Misra
,
J. C.
,
Pal
,
B.
, and
Gupta
,
A. S.
,
1998
, “
Hydromagnetic Flow of a Second-Grade Fluid in a Channel—Some Applications to Physiological Systems
,”
Math. Mod. Meth. Appl. Sci.
,
8
(
8
), pp.
1323
1342
.
18.
Shercliff, J. A., 1965, A Textbook of Magnetohydrodynamics, Pergamon Press, New York.
19.
Sutton, G. W., and Sherman, A. 1965, Engineering Magnetohydrodynamics, McGraw-Hill, New York.
20.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
, pp.
2182
2189
.
21.
Roache, P. J., 1985, Computational Fluid Dynamics, Hermosa Publishers, NM.
22.
Hirt
,
C. W.
,
1968
, “
Heuristic Stability Theory for Finite-Difference Equations
,”
J. Comput. Phys.
,
2
, pp.
339
355
.
23.
Zamir
,
M.
, and
Roach
,
M. R.
,
1973
, “
Blood Flow Downstream of a Two-Dimensional Bifurcation
,”
J. Theor. Biol.
,
42
, pp.
33
41
.
24.
Cowling, T. G., 1957, Magnetohydrodynamics, John Wiley and Sons, New York.
25.
McDonald, D. A., 1974, Blood Flow in Arteries, Edward Arnold Press, London.
You do not currently have access to this content.