This paper describes optimality principles for the design of an engineering bifurcating-tube tree consisting of the convection and diffusion zones to attain the most effective gas transport. An optimality principle is formulated for the diffusion zone to maximize the total diffusion mass-transfer rate of gas across tube walls under a constant total-volume constraint. This optimality principle produces a new diameter distribution for the diffusion zone in contrast to the classical distribution for the convection zone. In addition. this paper gives a length distribution for an engineering tree based on an optimality principle for minimizing the total weight of the tree under constraints of a finite surface and elastic criteria for structural stability. Furthermore, the optimum branching angles are evaluated based on local optimality principles for a single bifurcating-tube branch.

1.
Weibel
,
E. R.
, and
Gomez
,
D. M.
, 1962, “
Architecture of the Human Lung
,”
Science
0036-8075,
137
, pp.
577
585
.
2.
Weibel
,
E. R.
, 1963,
Morphometry of the Human Lung
,
Academic
, New York.
3.
Murray
,
C. D.
, 1926, “
The Physiological Principle of Minimum Work
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
12
, pp.
207
214
.
4.
Horsfield
,
K.
, and
Cumming
,
G.
, 1967, “
Angles of Branching and Diameters of Branches in the Human Bronchial Tree
,”
Bull. Math. Biophys.
0007-4985,
29
, pp.
245
259
.
5.
Horsfield
,
K.
,
Dart
,
G.
,
Olson
,
D. E.
,
Filley
,
G. F.
, and
Cumming
,
G.
, 1971, “
Models of the Human Bronchial Tree
,”
J. Appl. Physiol.
0021-8987,
31
, pp.
201
217
.
6.
Horsfield
,
K.
, 1990, “
Diameters, Generations, and Orders of Branches in the Bronchial Tree
,”
J. Appl. Physiol.
8750-7587,
68
, pp.
457
461
.
7.
Wilson
,
T. A.
, 1967, “
Design of the Bronchial Tree
,”
Nature (London)
0028-0836,
18
, pp.
668
669
.
8.
West
,
B. J.
,
Bhargava
,
V.
, and
Goldberger
,
A. L.
, 1986, “
Beyond the Principle of Similitude: Renormalization in the Bronchial Tree
,”
J. Appl. Physiol.
8750-7587,
60
, pp.
1089
1097
.
9.
West
,
B. J.
, and
Goldberger
,
A. L.
, 1987, “
Physiology in Fractal Dimensions
,”
Am. Sci.
0003-0996,
75
, pp.
354
365
.
10.
Rashevsky
,
N.
, 1960, “
Mathematical Biophysics—Physico-mathematical Foundation of Biology
,”
Dover
, New York, Vol.
2
, Chap. XXVI.
11.
LaBarbera
,
M.
, 1990, “
Principles of Design of Fluid Transport Systems in Zoology
,”
Science
0036-8075,
249
, pp.
992
1000
.
12.
LaBarbera
,
M.
, 1993, “
Optimality in Biological Fluid Transport Systems
,” In
Fluid Dynamics in Biology, Contemporary Mathematics
,
A. Y.
Cheer
and
C. P.
van Dam
, eds.,
American Mathematical Society
, Providence, RI, Vol.
141
, pp.
565
586
.
13.
Mandelbrot
,
B. B.
, 1982,
The Fractal Geometry of Nature
,
Freeman
, New York, Chaps. 12 and 17.
14.
McMahon
,
T.
, 1973, “
Size and Shape in Biology
,”
Science
0036-8075
179
, pp.
1201
1204
.
15.
Timoshenko
,
S.
, and
Goodier
,
N.
, 1951, “
Theory of Elasticity
(2nd ed.),”
McGraw-Hill
, New York.
16.
Zamir
,
M.
, 1976, “
Optimality Principles in Arterial Branching
,”
J. Theor. Biol.
0022-5193,
62
, pp.
227
251
.
17.
Uylings
,
H. B. M.
, 1977, “
Optimization of Diameters and Bifurcation Angles in Lung and Vascular Tree Structures
,”
Bull. Math. Biol.
0092-8240,
39
, pp.
509
520
.
18.
Roy
,
A. G.
, and
Woldenberg
,
M. J.
, 1982, “
A Generalization of the Optimal Models of Arterial Branching
,”
Bull. Math. Biol.
0092-8240,
44
, pp.
349
360
.
You do not currently have access to this content.