The dripping problem of a viscoplastic (yield-stress) liquid running slowly out of a narrow vertical tube is considered. The volume of the drops which break away is determined. A Lagrangian coordinate system is used to analyze the extension of the thread as it sags under its own weight, neglecting inertia and capillarity. The biviscosity model has been used to characterize viscoplastic fluids; the Newtonian and Bingham models can be recovered as limiting cases. The Bingham limit is of special interest.

1.
Rezanka
,
I.
, and
Eschbach
,
R.
, 1996,
Recent Progress in Ink Jet Technologies
,
IST Press
, Springfield, VA.
2.
Pappen
,
R.
, 1998,
Procee. of IBC Int. Conf. on Massively Parallel DNA Analysis
, San Francisco.
3.
Heideger
,
W. J.
, and
Wright
,
M. W.
, 1986,
AIChE J.
0001-1541
32
, p.
1372
.
4.
Ambravaneswaran
,
B.
,
Phillips
,
S. D.
, and
Basaran
,
O. A.
, 2000, “
Theoretical Analysis of a Dripping Faucet
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
5332
3325
.
5.
Wilkes
,
E. D.
,
Phillips
,
S. D.
, and
Basaran
,
O. A.
, 1999, “
Computational and Experimental Analysis of Dynamics of Drop Formation
,”
Phys. Fluids
1070-6631
11
, pp.
3577
3598
.
6.
Chen
,
A. U.
,
Notz
,
P. K.
, and
Basaran
,
O. A.
, 2002, “
Computational and Experimental Analysis of Pinch-off and Scaling
,”
Phys. Rev. Lett.
0031-9007
88
, pp.
174501
174504
.
7.
Wilson
,
S. D. R.
, 1999, “
The Slow Dripping of a Viscous Fluid
,”
J. Fluid Mech.
0022-1120
190
, pp.
561
570
.
8.
Fuchikami
,
N.
,
Ishioka
,
S.
and
Kiyono
,
K.
, 1999, “
Simulation of a Dripping Faucet
,”
J. Phys. Soc. Jpn.
0031-9015
68
, pp.
1185
1196
.
9.
Coullet
,
P.
,
Mahadevan
,
L.
and
Riera
,
C.
, 2000, “
Return Map for the Chaotic Dripping Faucet
,”
Prog. Theor. Phys. Suppl.
0375-9687
139
, pp.
507
516
.
10.
Renardy
,
M.
, 1994, “
Some Comments on the Surface-Tension Driven Break-up (or the Lack of it) of Viscoelasticets
,”
J. Non-Newtonian Fluid Mech.
0377-0257
51
, pp.
97
107
.
11.
Renardy
,
M.
, 1995, “
A Numerical Study of the Asymptotic Evolution and Breakup of Newtonian and Viscoelastic Jets
,”
J. Non-Newtonian Fluid Mech.
0377-0257
59
, pp.
267
282
.
12.
Eggers
,
J.
, 1997, “
Nonlinear dynamics and breakup of free-surface flows
,”
Rev. Mod. Phys.
0034-6861
69
(
3
), pp.
865
929
.
13.
Barnes
,
H. A.
, and
Walters
,
K.
, 1985, “
The Yield Stress Myth
?”
Rheol. Acta
0035-4511
24
(
4
), pp.
323
326
.
14.
Beverly
,
C. R.
, and
Tanner
,
R. I.
, 1992, “
Numerical Analysis of Three Dimensional Bingham Plastic Flow
,”
J. Non-Newtonian Fluid Mech.
0377-0257
42
, pp.
85
115
.
15.
Wilson
,
S. D. R.
, 1993, “
Squeezing flow of a Bingham material
,”
J. Non-Newtonian Fluid Mech.
0377-0257
47
, pp.
211
219
.
16.
Al Khatib
,
M. A. M.
, 2003, “
The Stretching of a Viscoplastic Thread of Liquid
,”
ASME J. Fluids Eng.
0098-2202
125
, pp.
946
951
.
You do not currently have access to this content.