This paper treats the question of control of a biorobotic autonomous undersea vehicle (BAUV) in the yaw plane using a biomimetic mechanism resembling the pectoral fins of fish. These fins are assumed to undergo a combined sway-yaw motion and the bias angle is treated as a control input, which is varied in time to accomplish the maneuver in the yaw-plane. The forces and moments produced by the flapping foil are parametrized using computational fluid dynamics. A finite-difference-based, Cartesian grid immersed boundary solver is used to simulate flow past the flapping foils. The periodic forces and moments are expanded as a Fourier series and a discrete-time model of the BAUV is developed for the purpose of control. An optimal control system for the set point control of the yaw angle and an inverse control law for the tracking of time-varying yaw angle trajectories are designed. Simulation results show that in the closed-loop system, the yaw angle follows commanded sinusoidal trajectories and the segments of the intersample yaw trajectory remain close to the discrete-time reference trajectory. It is also found that the fins suitably located near the center of mass of the vehicle provide better maneuverability.

1.
Azuma
,
A.
, 1992,
The Bio-Kinetics of Flying and Swimming
,
Springer-Verlag
,
Berlin
.
2.
Sfakiotakis
,
M.
,
Lane
,
D. M.
, and
Davies
,
J. B. C.
, 1999, “
Review of Fish Swimming Modes for Aquatic Locomotion
,”
IEEE J. Ocean. Eng.
0364-9059,
24
(
2
), pp.
237
253
.
3.
Triantafyllou
,
G. S.
, and
Triantafyllou
,
M. S.
, 1995, “
An Efficient Swimming Machine
,”
Sci. Am.
0036-8733,
272
, pp.
64
70
.
4.
Bandyopadhyay
,
P. R.
,
Castano
,
J. M.
,
Rice
,
J. Q.
,
Philips
,
R. B.
,
Nedderman
,
W. H.
, and
Macy
,
W. K.
, 1997, “
Low-Speed Maneuvering Hydrodynamics of Fish and Small Underwater Vehicles
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
136
144
.
5.
Lauder
,
G. V.
, and
Drucker
,
E. G.
, 2004, “
Morphology and Experimental Hydrodynamics of Fish Fin Control Surfaces
,”
IEEE J. Ocean. Eng.
0364-9059,
29
, pp.
556
571
.
6.
Walker
,
J. A.
, 2004, “
Kinematics and Performance of Maneuvering Control Surfaces in Teleost Fishes
,”
IEEE J. Ocean. Eng.
0364-9059,
29
, pp.
572
584
.
7.
Triantafyllou
,
M. S.
,
Techet
,
A. H.
, and
Hover
,
F. S.
, 2004, “
Review of Experimental Work in Biomimetic Foils
,”
IEEE J. Ocean. Eng.
0364-9059,
29
, pp.
585
594
.
8.
Mittal
,
R.
, 2004, “
Computational Modeling in Biohydrodynamics: Trends, Challenges, and Recent Advances
,”
IEEE J. Ocean. Eng.
0364-9059,
29
, pp.
595
604
.
9.
Westneat
,
M. W.
,
Thorsen
,
D. H.
,
Walker
,
J. A.
, and
Hale
,
M. E.
, 2004, “
Structure, Function, and Neural Control of Pectoral Fins in Fishes
,”
IEEE J. Ocean. Eng.
0364-9059,
29
, pp.
674
683
.
10.
Bandyopadhyay
,
P. R.
,
Castano
,
J. M.
, and
Dick
,
J.
, 1999, “
Biologically-Inspired Bodies Under Surface Waves—Part 1: Load Measurement
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
469
478
.
11.
Bandyopadhyay
,
P. R.
,
Singh
,
S. N.
, and
Chockalingam
,
F.
, 1999, “
Biologically-Inspired Bodies Under Surface Waves—Part 2: Theoretical Control of Maneuvering
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
479
487
.
12.
Bandyopadhyay
,
P. R.
, 2002, “
Maneuvering Hydrodynamics of Fish and Small Underwater Vehicles
,”
Integr. Comp. Biol.
1540-7063,
42
, pp.
102
117
.
13.
Triantafyllou
,
M. S.
,
Techet
,
A.
, and
Hover
,
F.
, 2003, “
Review of Experimental Work in Biomimetic Foils
,”
13th International Symposium on Unmanned Untethered Submersible Technology (UUST)
, New England Center, Durham, NH.
14.
Martin
,
C. B.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
, 2001, “
Maneuvering Performance of a Rolling and Pitching Wing
,”
12th International Symposium on Unmanned Untethered Submersible Technology
,” New England Center, Durham, NH.
15.
Yamamoto
,
I.
,
Terada
,
Y.
,
Nagamatu
,
T.
, and
Imaizumi
,
Y.
, 1995, “
Propulsion System With Flexible/Rigid Oscillating Fin
,”
IEEE J. Ocean. Eng.
0364-9059,
20
(
1
), pp.
23
30
.
16.
Kato
,
N.
, 2002, “
Pectoral Fin Controllers
,”
Neurotechnology for Biometric Robots
,
MIT Press
,
Cambridge, MA
, pp.
325
350
.
17.
Kato
,
N.
, 2000, “
Performance in the Horizontal Plane of a Fish Robot With Mechanical Pectoral Fins
,”
IEEE J. Ocean. Eng.
0364-9059,
25
(
1
), pp.
121
129
.
18.
Mittal
,
R.
,
Utturkar
,
Y.
, and
Udaykumar
,
H. S.
, 2002, “
Computational Modeling and Analysis of Biomimetic Flight Mechanisms
,” AIAA Paper No. 2002–0865.
19.
Udaykumar
,
H. S.
,
Mittal
,
R.
,
Rampunggoon
,
P.
, and
Khanna
,
A.
, 2001, “
A Sharp Interface Cartesian Grid Method for Simulating Flows With Complex Moving Boundaries
,”
J. Comput. Phys.
0021-9991,
174
,
345
380
.
20.
Ye
,
T.
,
Mittal
,
R.
,
Udaykumar
,
H. S.
, and
Shyy
,
W.
, 1999, “
An Accurate Cartesian Grid Method for Simulation of Viscous Incompressible Flows With Complex Immersed Boundaries
,”
J. Comput. Phys.
0021-9991,
156
,
209
240
.
21.
Ramamurti
,
R.
,
Lohner
,
R.
, and
Sandberg
,
W.
, 1996, “
Computation of the Unsteady-Flow Past a Tuna With Caudal Fin Oscillation
,”
Adv. Fluid Mech. Series
,
9
, pp.
169
178
.
22.
Najjar
,
F. M.
,
Mittal
,
R.
,
Rampunggoon
,
P.
, and
Khanna
,
A.
, 2003, “
Simulations of Complex Flows and Fluid-Structure Interaction Problems on Fixed Cartesian Grids
,” ASME Paper No. FEDSM2003–45577.
23.
Lee
,
J. S.
,
Kim
,
C.
, and
Rho
,
O. H.
, 2003, “
The Modification of Airfoil Shape for Optimal Aerodynamic Performance on Flapping-Airfoil in Low-Reynolds Number Flow
,” AIAA Paper No. 2003–421.
24.
Mittal
,
R.
, 2004, “
Computational Modeling in Bio-Hydrodynamics: Trends, Challenges and Recent Advances
,”
IEEE J. Ocean. Eng.
0364-9059,
29
(
3
), pp.
595
604
.
25.
Koochesfahani
,
M. M.
, 1987, “
Vertical Patterns in the Wake of an Oscillating Airfoil
,”
AIAA 25th Aerospace Sciences Meeting
, Reno, AIAA Paper No. 87–0111.
26.
Mittal
,
R.
,
Akhtar
,
I.
,
Bozkurttas
,
M.
, and
Najjar
,
F. M.
, 2003, “
Towards a Conceptual Model of a Bio-Robotic AUV: Pectoral Fin Hydrodynamics
,”
13th International Symposium on Unmanned Untethered Submersible Technology
, Durham, NH, August.
27.
Meneveau
,
C.
,
Lund
,
T. S.
, and
Cabot
,
W. H.
, 1996, “
A Lagrangian Dynamic Subgrid-Scale Model of Turbulence
,”
J. Fluid Mech.
0022-1120,
319
, pp.
353
385
.
28.
Bozkurttas
,
M.
,
Dong
,
H.
,
Mittal
,
R.
, and
Najjar
,
F.
, 2005, “
Towards Numerical Simulation of Flapping Foils on Fixed Cartesian Grids
,” Reno, NV, January, AIAA Paper No. 2005–0079.
29.
Dong
,
H.
,
Mittal
,
R.
,
Bozkurttas
,
M.
, and
Najjar
,
F.
, 2005, “
Wake Structure and Performance of Finite Aspect-Ratio Flapping Foils
,” Reno, NV, January, AIAA Paper No. 2005–0081.
30.
Soria
,
J.
, and
Cantwell
,
B. J.
, 1993, “
Identification and Classification of Topological Structures in Free Shear Flows
,”
Eddy Structure Identification in Free Turbulent Shear Flows
,
J. P.
Bonnet
and
M. N.
Glauser
, eds., pp.
379
390
.
31.
Fossen
,
T. I.
, 1999,
Guidance and Control of Ocean Vehicles
,
Wiley
,
New York
.
32.
Singh
,
S. N.
,
Simha
,
A.
, and
Mittal
,
R.
, 2004, “
Biorobotic AUV Maneuvering by Pectoral Fins: Inverse Control Design Based on CFD Parameterization
,”
IEEE J. Ocean. Eng.
0364-9059,
29
(
3
), pp.
777
785
.
33.
Ridley
,
P.
,
Fontan
,
J.
, and
Corke
,
P.
, 2003, “
Submarine Dynamic Modeling
,”
Australian Conference on Robotics and Automation
,
Brisbane
,
Australia
, December.
34.
Davison
,
E. J.
, 1976, “
The Robust Control of a Servomechanism Problem for Linear Time-Invariant Multivariable Systems
,”
IEEE Trans. Autom. Control
0018-9286,
21
, pp.
25
34
.
35.
Phillips
,
C. L.
, and
Nagle
,
H. T.
, 1995, “
Digital Control System Analysis and Design
,” Prentice-Hall, Englewood Cliffs, NJ.
36.
Chen
,
C. T.
, 1998,
Linear System Theory and Design
,
Oxford University Press
,
London
.
You do not currently have access to this content.