Numerical modeling and analytical approach were used to compute laminar flows in rough-wall microchannels. Both models considered the same arrangements of rectangular prism rough elements in periodical arrays. The numerical results confirmed that the flow is independent of the Reynolds number in the range 1–200. The analytical model needs only one constant for most geometrical arrangements. It compares well with the numerical results. Moreover, both models are consistent with experimental data. They show that the rough elements drag is mainly responsible for the pressure drop across the channel in the upper part of the relative roughness range.

1.
Mala
,
G. M.
, and
Li
,
D.
, 1999, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
142
148
.
2.
Li
,
Z. X.
,
Du
,
D. X.
, and
Guo
,
Z. Y.
, 2003, “
Experimental Study on Flow Characteristics of Liquid in Circular Microtubes
,”
Microscale Thermophys. Eng.
1089-3954,
7
, pp.
253
265
.
3.
Guo
,
Z. Y.
, and
Li
,
Z.
, 2003, “
Size Effect on Microscale Single-Phase Flow and Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
149
159
.
4.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
, 2002, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3477
3489
5.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
, 2000, “
Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
353
364
.
6.
Pfund
,
D.
,
Rector
,
D.
,
Shekarriz
,
A.
,
Popescu
,
A.
, and
Welty
,
J.
, 2000, “
Pressure Drop Measurements in a Microchannel
,”
AIChE J.
0001-1541,
46
, pp.
1496
1507
.
7.
Bavière
,
R.
,
Ayela
,
F.
,
Le Person
,
S.
, and
Favre-Marinet
,
M.
, 2004, “
An Experimental Study of Water Flow in Smooth and Rectangular Microchannels
,”
Second International Conference on Microchannels and Minichannels, Rochester
, June 2004,
S. G.
Kandlikar
ed.,
ASME
,
New York
, pp.
221
228
.
8.
Bavière
,
R.
, “
Etude de l’Hydrodynamique et des Transferts de Chaleur dans des Microcanaux
,” Ph.D. thesis, UJF Grenoble University, http://tel.ccsd.cnrs. fr/http://tel.ccsd.cnrs. fr/.
9.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2003, “
Liquid Flow in Microchannels: Experimental Observations and Computational Analyses of Microfluidic Effects
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
578
579
.
10.
Kleinstreuer
,
C.
, and
Koo
,
J.
, 2004, “
Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits
,”
J. Fluids Eng.
0098-2202,
126
, pp.
1
9
.
11.
Hu
,
H.
,
Werner
,
C.
, and
Li
,
D.
, 2003, “
Influence of Three-Dimensional Roughness on Pressure-Driven Flow Through Microchannels
,”
J. Fluids Eng.
0098-2202,
125
, pp.
871
879
.
12.
Taylor
,
R. P.
,
Coleman
,
H. W.
, and
Hodge
,
B. K.
, 1985, “
Prediction of Turbulent Rough-Wall Skin Friction Using a Discrete Element Approach
,”
J. Fluids Eng.
0098-2202,
107
, pp.
251
257
.
13.
Roache
,
P. J.
, 1997, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
123
160
.
14.
White
,
F. M.
, 1991,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
15.
Sherman
,
F. S.
, 1990,
Viscous Flow
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.