Hopf bifurcation of steady base flow and onset of vortex shedding over a transverse periodic array of circular cylinders is considered. The influence of transverse spacing on critical Reynolds number is investigated by systematically varying the gap between the cylinders from a small value to large separations. The critical Reynolds number behavior for the periodic array of circular cylinders is compared with the corresponding result for a periodic array of long rectangular cylinders considered in [Balanchandar, S., and Parker, S. J., 2002, “Onset of Vortex Shedding in an Inline and Staggered Array of Rectangular Cylinders,” Phys. Fluids, 14, pp. 3714–3732]. The differences between the two cases are interpreted in terms of differences between their wake profiles.

1.
Sangani
,
A. S.
, and
Acrivos
,
A.
, 1982, “
Slow Flow Past Periodic Arrays of Cylinders With Application to Heat Transfer
,”
Int. J. Multiphase Flow
0301-9322,
8
, pp.
193
206
.
2.
Wang
,
C. Y.
, 2001, “
Stokes Flow Through a Rectangular Array of Circular Cylinders
,”
Fluid Dyn. Res.
0169-5983,
29
(
2
), pp.
65
80
.
3.
Chen
,
Y. N.
, 1968, “
Flow Induced Vibration and Noise in Tube-Bank Heat Exchangers Due to Von Karman Streets
,”
J. Eng. Ind.
0022-0817,
90
, pp.
134
146
.
4.
Koch
,
D. L.
. and
Ladd
,
A. J. C.
, 1997, “
Moderate Reynolds Number Flows Through Periodic and Random Arrays of Aligned Cylinders
,”
J. Fluid Mech.
0022-1120,
349
, pp.
31
66
.
5.
Lee
,
S. L.
, and
Yang
,
J. H.
, 1997, “
Modeling of Darcy-Forchheimer Drag for Fluid Flow Across a Bank of Circular Cylinders
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
3149
3155
.
6.
Balanchandar
,
S.
, and
Parker
,
S. J.
, 2002, “
Onset of Vortex Shedding in an Inline and Staggered Array of Rectangular Cylinders
,”
Phys. Fluids
1070-6631,
14
, pp.
3714
3732
.
7.
Deville
,
M. O.
,
Fischer
,
P. F.
, and
Mund
,
E. H.
, 2002,
High-Order Methods for Incompressible Fluid Flow
,
Cambridge University Press
,
Cambridge
.
8.
Tezduyar
,
T. E.
, and
Shih
,
R.
, 1991, “
Numerical Experiments on Downstream Boundary of Flow Past Cylinder
,”
J. Eng. Mech.
0733-9399,
117
, pp.
854
871
.
9.
Zebib
,
A.
, 1987, “
Stability of Viscous Flow Past a Circular Cylinder
,”
J. Eng. Math.
0022-0833,
21
, pp.
155
165
.
10.
Jackson
,
P.
, 1987, “
A Finite Element Study of the Onset of Vortex Shedding in Flow Past Variously Shaped Bodies
,”
J. Fluid Mech.
0022-1120,
182
, pp.
23
45
.
11.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
, 1999, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Near-Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
387
, pp.
353
396
.
12.
Pierrehumbert
,
R. T.
, 1984, “
Local and Global Baroclinic Instability of Zonally Varying Flow
,”
J. Atmos. Sci.
0022-4928,
41
, pp.
2141
2162
.
13.
Koch
,
W.
, 1985, “
Local Instability Characteristics and Frequency Determination of Self-Excited Wake Flows
,”
J. Sound Vib.
0022-460X,
99
, pp.
53
83
.
14.
Monkewitz
,
P. A.
, and
Nguyen
,
L. N.
, 1987, “
Absolute Instability in the Near-Wake of Two-Dimensional Bluff Bodies
,”
J. Fluids Struct.
0889-9746,
1
, pp.
165
184
.
You do not currently have access to this content.