Active control was simulated numerically for the subsonic flow through a highly loaded low-pressure turbine. The configuration approximated cascade experiments that were conducted to investigate a reduction in turbine stage blade count, which can decrease both weight and mechanical complexity. At a nominal Reynolds number of 25,000 based upon axial chord and inlet conditions, massive separation occurred on the suction surface of each blade due to uncovered turning. Vortex generating jets were then used to help mitigate separation, thereby reducing wake losses. Computations were performed using both steady blowing and pulsed mass injection to study the effects of active flow control on the transitional flow occurring in the aft-blade and near-wake regions. The numerical method utilized a centered compact finite-difference scheme to represent spatial derivatives, that was used in conjunction with a low-pass Pade-type nondispersive filter operator to maintain stability. An implicit approximately factored time-marching algorithm was employed, and Newton-like subiterations were applied to achieve second-order temporal accuracy. Calculations were carried out on a massively parallel computing platform, using domain decomposition to distribute subzones on individual processors. A high-order overset grid approach preserved spatial accuracy in locally refined embedded regions. Features of the flowfields are described, and simulations are compared with each other, with available experimental data, and with a previously obtained baseline case for the noncontrolled flow. It was found that active flow control was able to maintain attached flow over an additional distance of 19–21% of the blade chord, relative to the baseline case, which resulted in a reduction of the wake total pressure loss coefficient of 53–56%.

1.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
, 1995, “
Boundary Layer Development in Axial Compressors and Turbines Part 1 of 4: Composite Picture
,” ASME Paper No. 95-GT-461.
2.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
, 1995, “
Boundary Layer Development in Axial Compressors and Turbines Part 3 of 4: LP Turbines
,” ASME Paper No. 95-GT-463.
3.
Simon
,
T. W.
, and
Volino
,
R. J.
, 1996, “
Separating and Separated Boundary Layers
,” WL-TR-96-2092, Wright Laboratory, Wright-Patterson AFB, OH.
4.
Baughn
,
J. W.
,
Butler
,
R. J.
,
Byerley
,
A. R.
, and
Rivir
,
R. B.
, 1966, “
An Experimental Investigation of Heat Transfer, Transition and Separation on Turbine Blades at Low Reynolds Number and High Turbulence Intensity
,” WL-TR-96-2093, Wright Laboratory, Wright-Patterson AFB, OH.
5.
Murawski
,
C. G.
,
Simon
,
T. W.
,
Volino
,
R. J.
, and
Vafai
,
K.
, 1997, “
Experimental Study of the Unsteady Aerodynamics in a Linear Cascade With Low Reynolds Number Low Pressure Turbine Blades
,” ASME Paper No. 97-GT-95.
6.
Qui
,
S.
, and
Simon
,
T. W.
, 1997, “
An Experimental Investigation of Transition as Applied to Low Pressure Turbine Suction Surface Flows
,” ASME Paper No. 97-GT-455.
7.
Welsh
,
S. T.
,
Barlow
,
D. N.
,
Butler
,
R. J.
,
Van Treuren
,
K. W.
,
Byerley
,
A. R.
,
Baughn
,
J. W.
, and
Rivir
,
R. B.
, 1997, “
Effects of Passive and Active Air-Jet Turbulence on Turbine Blade Heat Transfer
,” ASME Paper No. 97-GT-131.
8.
Murawski
,
C. G.
, and
Vafai
,
K.
, 1999, “
Effect of Variable Axial Chord on a Low-Pressure Turbine Blade
,”
J. Propul. Power
0748-4658,
15
(
5
), pp.
667
674
.
9.
Lake
,
J. P.
,
King
,
P. I.
, and
Rivir
,
R. B.
, 1999, “
Reduction of Separation Losses on a Turbine Blade With Low Reynolds Number
,” AIAA Paper No. 99-0242.
10.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
, 1999, “
Control of Low-Pressure Turbine Separation Using Vortex Generator Jets
,” AIAA Paper No. 99-0367.
11.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
, 2001, “
Turbine Separation Control Using Pulsed Vortex Generator Jets
,”
ASME J. Turbomach.
0889-504X,
123
(
2
), pp.
198
206
.
12.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
, 2002, “
The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets
,”
ASME J. Turbomach.
0889-504X,
124
(
1
), pp.
77
85
.
13.
Sondergaard
,
R.
,
Rivir
,
R. B.
, and
Bons
,
J. P.
, 2002, “
Control of Low-Pressure Turbine Separation Using Vortex Generator Jets
,”
J. Propul. Power
0748-4658,
18
(
4
), pp.
889
895
.
14.
Volino
,
R. J.
, 2003, “
Passive Flow Control on Low-Pressure Turbine Airfoils
,”
ASME J. Turbomach.
0889-504X,
125
(
4
), pp.
754
764
.
15.
Volino
,
R. J.
, 2003, “
Separation Control on Low-Pressure Turbine Airfoils Using Synthetic Vortex Generator Jets
,”
ASME J. Turbomach.
0889-504X,
125
(
4
), pp.
765
777
.
16.
Huang
,
J.
,
Corke
,
T. C.
, and
Thomas
,
F. O.
, 2003, “
Plasma Actuators for Separation Control of Low Pressure Turbine Blades
,” AIAA Paper No. 2003-1027.
17.
Sondergaard
,
R.
,
Bons
,
J. P.
,
Sucher
,
M.
, and
Rivir
,
R. B.
, 2002, “
Reducing Low-Pressure Turbine Stage Blade Count Using Vortex Generator Jet Separation Control
,” ASME Paper No. GT-2002-30602.
18.
Eulitz
,
F.
, and
Engel
,
K.
, 1998, “
Numerical Investigation of Wake Interaction in a Low Pressure Turbine
,” AIAA Paper No. 98-GT-563.
19.
Choi
,
C. H.
, and
Yoo
,
J. Y.
, 1998, “
Cascade Flow Calculations Using the k−ω Turbulence Model With Explicit-Implicit Solver
,”
AIAA J.
0001-1452,
35
(
9
), pp.
1551
1552
.
20.
Chernobrovkin
,
A.
, and
Lakshminarayana
,
B.
, 1999, “
Turbulence Modeling and Computation of Viscous Transitional Flows for Low Pressure Turbines
,”
J. Fluids Eng.
0098-2202,
121
(
4
), pp.
824
833
.
21.
Dorney
,
D. J.
,
Ashpis
,
D. E.
,
Halstead
,
D. E.
, and
Wisler
,
D. C.
, 2000, “
Study of Boundary-Layer Development in a Two-Stage Low-Pressure Turbine
,”
J. Propul. Power
0748-4658,
16
(
1
), pp.
160
163
.
22.
Suzen
,
Y. B.
,
Huang
,
P. G.
,
Volino
,
R. J.
,
Corke
,
T. C.
,
Thomas
,
F. O.
,
Huang
,
J.
,
Lake
,
J. P.
, and
King
,
P. I.
, 2003 “
A Comprehensive CFD Study of Transitional Flows in Low-Pressure Turbines Under a Wide Range of Operating Conditions
,” AIAA Paper No. 2003-3591.
23.
Suzen
,
Y. B.
,
Huang
,
P. G.
,
Hultgren
,
L. S.
, and
Ashpis
,
D. E.
, 2001, “
Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation
,”
ASME J. Turbomach.
0889-504X,
125
(
3
), pp.
455
464
.
24.
Raverdy
,
B.
,
Mary
,
I.
,
Sagaut
,
P.
, and
Liamis
,
N.
, 2001, “
Large-Eddy Simulation of the Flow Around a Low Pressure Turbine Blade
,”
Direct and Large-Eddy Simulation IV
,
ERCOFTAC Series
Vol.
8
,
B. J.
Guerts
,
R.
Friedrich
, and
O.
Metais
, eds.,
Kluwer Academic Publishers
, Dordrecht, The Netherlands, pp.
381
388
.
25.
Mittal
,
R.
,
Venkatasubramanian
,
S.
, and
Najjar
,
F. M.
, 2001, “
Large-Eddy Simulation of Flow Through a Low-Pressure Turbine Cascade
,” AIAA Paper No. 2001-2560.
26.
Postl
,
D.
,
Gross
,
A.
, and
Fasel
,
H. F.
, 2003, “
Numerical Investigation of Low-Pressure Turbine Blade Separation Control
,” AIAA Paper No. 2003-0614.
27.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
, 2003, “
Numerical Investigation of Transitional Flow Through a Low-Pressure Turbine Cascade
AIAA Paper No. 2003-3587.
28.
Wissink
,
J. G.
, 2003, “
DNS of Separating, Low-Reynolds Number Flow in a Turbine Cascade With Incoming Wakes
,”
Int. J. Heat Fluid Flow
0142-727X,
24
(
4
), pp.
626
635
.
29.
Kalitzin
,
G.
,
Wu
,
X.
, and
Durbin
,
P. A.
, 2003, “
DNS of Fully Turbulent Flow in a LPT Passage
,”
Int. J. Heat Fluid Flow
0142-727X,
24
(
4
), pp.
636
644
.
30.
Postl
,
D.
,
Gross
,
A.
, and
Fasel
,
H. F.
, 2004, “
Numerical Investigation of Active Flow Control for Low-Pressure Turbine Blade Separation
,” AIAA Paper No. 2004-750.
31.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
, 2004, “
Numerical Simulation of Separation Control for a Highly Loaded Low-Pressure Turbine
,”
AIAA J.
0001-1452,
43
(
9
), pp.
1958
1967
.
32.
Gross
,
A.
, and
Fasel
,
H. F.
, 2004, “
Active Control of Separation for Low-Pressure Turbine Blades
,” AIAA Paper No. 2004-2203.
33.
Rivir
,
R. B.
,
Sondergaard
,
R.
,
Bons
,
J. P.
, and
Yurchenko
,
N.
, 2004, “
Control of Separation in Turbine Boundary Layers
,” AIAA Paper No. 2004-2201.
34.
Beam
,
R.
, and
Warming
,
R.
, 1978, “
An Implicit Factored Scheme for the Compressible Navier-Stokes Equations
,”
AIAA J.
0001-1452,
16
(
4
), pp.
393
402
.
35.
Gordnier
,
R. E.
, and
Visbal
,
M. R.
, 1993, “
Numerical Simulation of Delta-Wing Roll
,” AIAA Paper No. 93-0554.
36.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
, 1981, “
Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes
,” AIAA Paper No. 81-1259.
37.
Pulliam
,
T. H.
, and
Chaussee
,
D. S.
, 1981, “
A Diagonal Form of an Implicit Approximate-Factorization Algorithm
,”
J. Comput. Phys.
0021-9991,
39
(
2
), pp.
347
363
.
38.
Lele
,
S. A.
, 1992, “
Compact Finite Difference Schemes With Spectral-like Resolution
,”
J. Comput. Phys.
0021-9991,
103
(
2
), pp.
16
42
.
39.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
, 1999, “
High-Order-Accurate Methods for Complex Unsteady Subsonic Flows
,”
AIAA J.
0001-1452,
37
(
10
), pp.
1231
1239
.
40.
Gaitonde
,
D.
,
Shang
,
J. S.
, and
Young
,
J. L.
, 1997, “
Practical Aspects of High-Order Accurate Finite-Volume Schemes for Electromagnetics
,” AIAA Paper No. 97-0363.
41.
Gaitonde
,
D.
, and
Visbal
,
M. R.
, 1998, “
High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation into FDL3DI
,” AFRL-VA-WP-TR-1998-3060, Air Force Research Laboratory, Wright-Patterson AFB, OH.
42.
Gordnier
,
R. E.
, and
Visbal
,
M. R.
, 1998, “
Numerical Simulation of Delta-Wing Roll
,”
Aerosol Sci. Technol.
0278-6826,
2
(
6
), pp.
347
357
.
43.
Gordnier
,
R. E.
, 1995, “
Computation of Delta-Wing Roll Maneuvers
,”
J. Aircr.
0021-8669,
32
(
3
), pp.
486
492
.
44.
Visbal
,
M. R.
, 1993, “
Computational Study of Vortex Breakdown on a Pitching Delta Wing
,” AIAA Paper No. 93-2974.
45.
Visbal
,
M.
,
Gaitonde
,
D.
, and
Gogineni
,
S.
, 1998, “
Direct Numerical Simulation of a Forced Transitional Plane Wall Jet
,” AIAA Paper No. 98-2643.
46.
Rizzetta
,
D. P.
,
Visbal
,
M. R.
, and
Stanek
,
M. J.
, 1999, “
Numerical Investigation of Synthetic-Jet Flowfields
,”
AIAA J.
0001-1452,
37
(
8
), pp.
919
927
.
47.
Rizzetta
,
D. P.
,
Visbal
,
M. R.
, and
Blaisdell
,
G. A.
, 2003, “
A Time-Implicit High-Order Compact Differencing and Filtering Scheme for Large-Eddy Simulation
,”
Int. J. Numer. Methods Fluids
0271-2091,
42
(
6
), pp.
665
693
.
48.
Rizzetta
,
D. P.
,
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
, 2001, “
Large-Eddy Simulation of Supersonic Compression-Ramp Flow by a High-Order Method
,”
AIAA J.
0001-1452,
39
(
12
), pp.
2283
2292
.
49.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
, 2002, “
Application of Large-Eddy Simulation to Supersonic Compression Ramps
,”
AIAA J.
0001-1452,
40
(
8
), pp.
1574
1581
.
50.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
, 2003, “
Large-Eddy Simulation of Supersonic Cavity Flowfields Including Flow Control
,”
AIAA J.
0001-1452,
41
(
8
), pp.
452
1462
.
51.
Steinbrenner
,
J. P.
,
Chawner
,
J. P.
, and
Fouts
,
C. L.
, 1991, “
The GRIDGEN 3D Multiple Block Grid Generation System, Volume II: User’s Manual
,” WRDC-TR-90-3022, Wright Research and Development Center, Wright-Patterson AFB, OH.
52.
Gruber
,
B.
, and
Carstens
,
V.
, 2001, “
The Impact of Viscous Effects on the Aerodynamic Damping of Vibrating Transonic Compressor Blades-A Numerical Study
,”
ASME J. Turbomach.
0889-504X,
123
(
2
), pp.
409
417
.
53.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
, 2001, “
Very High-Order Spatially Implicit Schemes for Computational Acoustics on Curvilinear Meshes
,”
J. Comput. Acoust.
0218-396X,
9
(
4
), pp.
1259
1286
.
54.
Sherer
,
S. E.
, 2003, “
Further Analysis of High-Order Overset Grid Method With Applications
,” AIAA Paper No. 2003-3839.
55.
Suhs
,
N. E.
,
Rogers
,
S. E.
, and
Dietz
,
W. E.
, 2003, “
PEGASUS 5: An Automated Preprocessor for Overset-Grid Computational Fluid Dynamics
,”
AIAA J.
0001-1452,
41
(
6
), pp.
1037
1045
.
56.
Message Passing Interface Forum, 1994, “
MPI: A Message-Passing Interface Standard
,” Computer Science Department Technical Report CS-94-230, University of Tennessee, Knoxville, TN.
You do not currently have access to this content.