Experiments have been performed on the low speed research compressor (LSRC) at General Electric Aircraft Engines to investigate the effects of flow coefficient, stagger angle, and tip clearance on tip vortex. Time resolved casing pressure distributions over the third stage rotor have been acquired with high-frequency-response pressure transducers. Also, tip vortex strength and trajectory have been estimated from the casing pressure fluctuations which have been obtained simultaneously from various axial locations. As flow coefficient decreases, tip vortex gets strengthened and migrates upstream. The stagger angle increase weakens the tip vortex and moves it downstream slightly because the blade loading is decreased. However, tip leakage vortex is influenced mainly by tip clearance, and there exists a “critical” tip clearance which determines the type of tip vortex trajectory (“straight” or “kinked”). As predicted by others, tip vortex gets strengthened with increasing tip clearance. However, unlike the predictions, the tip vortex trajectory moves upstream with increasing tip clearance. Furthermore, with tip clearance above a “critical” value, the tip vortex trajectory is no longer straight but shows a kink in the passage.

1.
Rains
,
D. A.
, 1954, “
Tip Clearance Flow in Axial Flow Compressors and Pumps
,” Hydrodynamics and Mechanical Engineering Laboratories Report, No. 5.
2.
Khalid
,
S. A.
,
Khalsa
,
A. S.
,
Waitz
,
I. A.
,
Tan
,
C. S.
,
Greitzer
,
E. M.
,
Cumpsty
,
N. A.
,
Adamczyk
,
J. J.
, and
Marble
,
F. E.
, 1999, “
Endwall Blockage in Axial Compressors
,”
ASME J. Turbomach.
0889-504X,
121
(
3
), pp.
499
509
.
3.
Storer
,
J. A.
, and
Cumpsty
,
N. A.
, 1994, “
An Approximate Analysis and Prediction Method for Tip Clearance Loss in Axial Compressors
,”
ASME J. Turbomach.
0889-504X,
116
(
4
), pp.
648
656
.
4.
Lakshminarayana
,
B.
, and
Pandya
,
A.
, 1984, “
Tip Clearance Flow in a Compressor Rotor Passage at Design and Off-Design Conditions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
(
3
), pp.
570
577
.
5.
Martinez-Sanchez
,
M.
, and
Gauthier
,
R. P.
, 1990, “
Blade Scale Effects of Tip Leakage
,” Gas Turbine Laboratory Report #202, M.I.T.
6.
Chen
,
G. T.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Marble
,
F. E.
, 1991, “
Similarity Analysis of Compressor Tip Clearance Flow Structure
,”
ASME J. Turbomach.
0889-504X,
113
(
2
), pp.
260
269
.
7.
Hoying
,
D. A.
,
Tan
,
C. S.
,
Vo
,
Huu D.
, and
Greitzer
,
E. M.
, 1999, “
Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception
,”
ASME J. Turbomach.
0889-504X,
121
(
4
), pp.
735
742
.
8.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
, 1999, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
0889-504X,
121
(
3
), pp.
469
480
.
9.
Hunter
,
I. H.
, and
Cumpsty
,
N. A.
, 1982, “
Casing Wall Boundary Layer Development Through an Isolated Compressor Rotor
,”
ASME J. Eng. Power
0022-0825,
104
(
4
), pp.
805
818
.
10.
Inoue
,
M.
, and
Kuroumaru
,
M.
, 1984, “
Three-Dimensional Structure and Decay of Vortices Behind an Axial Flow Compressor Rotor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
(
3
), pp.
561
569
.
11.
Wagner
,
J. H.
,
Dring
,
R. P.
, and
Joslyn
,
H. D.
, 1985, “
Inlet Boundary Layer Effects in an Axial Compressor Rotor: Part 1-Blade to Blade Effects
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
(
2
), pp.
374
386
.
12.
Inoue
,
M.
,
Kuroumaru
,
M.
, and
Fukuhara
,
M.
, 1986, “
Behavior of Tip Leakage Flow Behind an Axial Compressor Rotor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
108
(
1
), pp.
7
14
.
13.
Inoue
,
M.
, and
Kuroumaru
,
M.
, 1989, “
Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor
,”
ASME J. Turbomach.
0889-504X,
111
(
3
), pp.
250
256
.
14.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Iwamoto
,
T.
, and
Ando
,
Y.
, 1991, “
Detection of a Rotating Stall Precursor in Isolated Axial Flow Compressor Rotors
,”
ASME J. Turbomach.
0889-504X,
113
(
2
), pp.
281
289
.
15.
Marz
,
J.
,
Gui
,
X.
, and
Neise
,
W.
, 1999, “
On the structure of Rotating Instabilities in Axial Flow Machines
,” Paper AIAA 99-IS-282 presented at the
14th ISABE, Florence, Italy
.
16.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
, 2000, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,” 2000-GT-506.
17.
Goto
,
A.
, 1992, “
Three-Dimensional Flow and Mixing in an Axial Flow Compressor With Different Rotor Tip Clearances
,”
ASME J. Turbomach.
0889-504X,
114
(
3
), pp.
675
685
.
18.
Storer
,
J. A.
, and
Cumpsty
,
N. A.
, 1991, “
Tip Leakage Flow in Axial Compressors
,”
ASME J. Turbomach.
0889-504X,
113
(
2
), pp.
252
259
.
19.
Jang
,
C.-M.
,
Sato
,
D.
, and
Fukano
,
T.
, 2005, “
Experimental Analysis on Tip Leakage and Wake Flow in an Axial Flow Fan According to Flow Rates
,”
ASME J. Fluids Eng.
0098-2202,
127
(
2
), pp.
322
329
.
20.
Liu
,
B.
,
Yu
,
X.
,
Wang
,
H.
,
Liu
,
H.
,
Jiang
,
H.
, and
Chen
,
M.
, 2004, “
Evolution of the Tip Leakage Vortex in an Axial Compressor Rotor
,” 2004-GT-53703.
21.
Wisler
,
D. C.
, 1985, “
Loss Reduction in Axial-Flow Compressors Through Low-Speed Model Testing
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
(
2
), pp.
354
363
.
You do not currently have access to this content.