The computational and experimental results of impact loading a thin wall liquid filled cylindrical target within a vacuum chamber are presented. The impact velocity ranges from 2.2 to . Both experimental and computational results are presented. It will be shown that impact dynamics and the early time fluid expansion are well modeled and understood. This includes the mass distribution and resulting expansion velocity. However, the late time dynamics, which includes the liquid breakup and droplet formation process of impacted liquid filled cylinders, is not well understood.
Issue Section:
Technical Papers
1.
Stepka
, F. S.
, and Morse
, C. R.
, 1963, “Preliminary Investigation of Catastrophic Fracture of Liquid-Filled Tanks Impacted by High-Velocity Particles
,” NASA TN D-1537 Nasa Leis Research Center.2.
Stepka
, F. S.
, Morse
, C. R.
, and Dengler
, R. P.
, 1965, “Investigation of Characteristics of Pressure Waves Generated in Water Filled Tanks Impacted by High-Velocity Projectiles
,” NASA TN D-3143 NASA Lewis Research Center, N66-1329.3.
Morse
, C. R.
, and Stepka
, F. S.
, 1966, “Effect of Projectile Size and Material on Impact Fracture of Walls of Liquid-Filled Tanks
,” NASA TN D-3627 NASA Lewis Research Center.4.
Ferguson
, C. W.
, 1966, “Hypervelocity Impact Effects on Liquid Hydrogen Tanks
,” NASA CR-54852, NASA Lewis Research Center.5.
Richardson
, A. J.
, and Knepper
, J. J.
, 1970, “Hypervelocity Particle Damage Limits for Pressure Vessels
,” Space Division North American Rockwell Corporation, SA 500, NAS 9-150.6.
Whitney
, J. P.
, 1993, “Hypervelocity Impact Tests of Shielded and Unshielded Pressure Vessels
,” NASA Report JSC 32294.7.
Schafer
, F. K.
, Schneider
, E. E.
, and Lambert
, 1997, “Hypervelocity Impacts on Cylindrical Pressure Vessels—Experimental Results and Damage Classification
,” Proceedings from ASME-PVP Conference
, Orlando, FL, PVP-Vol. 351
, pp. 235
–244
.8.
Friesen
, L. J.
, 1995, “Hypervelocity Impact Tests of Shielded and Unshielded Pressure Vessels, Part II
,” NASA Report JSC 27081.9.
Lee
, T. W.
, and Yatteau
, J. D.
, 1976, “Hydraulic Ram Investigations
,” US Army Armament research and Development Command, ARBREL-CR-00365, Aberdeen Proving Ground.10.
Lewis
, M. W.
, and Wilson
, T. L.
, 1997, “Response of water-filled spherical Vessel to an internal explosion
,” Los Alamos, LA-13240-MS.11.
Wisotski
, J.
, 1978, “Penetration of Water by Rod Type Fragments
,” Denver Research Institute, Report N00123-76-C0166.12.
Yatteau
, J. D.
, and Wisotski
, J.
, 1978, “Penetration of Fluid by Rod Type Fragments
,” DRI No. 2710, Denver Research Institute.13.
Yatteau
, J. D.
, Zernow
, R. H.
, Dunn
, J. A.
, and Wisotski
, J.
, 1989, “Fragment Penetration of Fluid-Backed Plates
,” AFATL R 89-59, Air Force Armament Laboratory, Eglin Air Force Base.14.
Taylor
, G. I.
, 1950, “The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Planes I
,” Proc. R. Soc. London, Ser. A
1364-5021, 201
, pp. 192
–196
.15.
Sharp
, D. H.
, 1984, “An Overview of Rayleigh-Taylor Instability
,” Physica D
0167-2789, 12
, pp. 3
–18
.16.
Richtmyer
, R. D.
, 1960, “Taylor Instability in Shock Acceleration of Compressible Fluids
,” Commun. Pure Appl. Math.
0010-3640, XIII
, pp. 297
–319
.17.
Meshkov
, E. E.
, 1970, “Instability of the Interface of Two Gases Accelerated by a Shock Wave
,” NASA Tech. Trans. F-13
, 074.18.
Zhang
, Q.
, and Sohn
, S.
, 1996, “An Analytical Nonlinear Theory of Richtmyer-Meshkov Instability
,” Phys. Lett. A
0375-9601, 212
, pp. 149
–155
.19.
Holmes
, R. L.
, Dimonte
, G.
, Fryxell
, B.
, Gittings
, M. L.
, Grove
, J. W.
, Schneider
, M.
, Sharp
, D. H.
, Velikovich
, A. L.
, Weaver
, R. P.
, and Zhang
, Q.
, 1999, “Richtmyer-Meshkov Instability Growth: Experiment, Simulation and Theory
,” J. Fluid Mech.
0022-1120, 389
, pp. 55
–79
.20.
Prasad
, J. K.
, Rasheed
, A.
, Kumar
, S.
, and Sturtevant
, B.
, 2000, “The Late-Time Development of the Richtmyer-Meshkov Instability
,” Phys. Fluids
1070-6631, 12
(8
), pp. 2108
–2115
.21.
Bellman
, R.
, and Pennington
, R. H.
, 1954, “Effects of Surface Tension and Viscosity on Taylor Instability
,” Q. Appl. Math.
0033-569X, 12
, pp. 151
–162
.22.
Chandrasekhar
, S.
, 1961, Hydrodynamic and Hydrodynamic Instability
, Oxford University Press
, New York.23.
Menikoff
, R.
, Mjolsness
, R. C.
, Sharp
, D. H.
, and Zemach
, C.
, 1977, “Unstable Normal Mode for Rayleigh-Taylor Instabilities in Viscous Fluids
,” Phys. Fluids
0031-9171, 20
(12
), pp. 2000
–2004
.24.
Mulser
, P.
, 1987, “Reduction of Rayleigh-Taylor Growth due to Viscosity Effects
,” Laser Part. Beams
0263-0346, 6
(1
), pp. 119
–120
.25.
Plesset
, M. S.
, 1954, “On the Stability of Fluid Flows with Spherical Symmetry
,” J. Appl. Phys.
0021-8979, 25
(1
), pp. 96
–106
.26.
Berkoff
, G.
, 1954, “Note on Taylor Instability
,” Q. Appl. Math.
0033-569X, 12
(3
), pp. 306
–309
.27.
Zhang
, Q.
, and Graham
, M. J.
, 1998, “A Numerical Study of Richtmyer-Meshkov Instability Driven by Cylindrical Shocks
,” Phys. Fluids
1070-6631, 10
(4
), pp. 974
–992
.28.
Jones
, M. A.
, and Jacobs
, J. W.
, 1997, “A Membraneless Experiment for the Study of Richtmyer-Meshkov Instability of a Shock-Accelerated Gas Interface
,” Phys. Fluids
1070-6631, 9
, pp. 3078
–3085
.29.
Vetter
, M.
, and Sturtevant
, B.
, 1994, “Experiments of the Richtmyer-Meshkov Instability of an air∕SF6 Interface
,” Shock Waves
0938-1287, 4
, pp. 247
–252
.30.
Mikaelian
, K. O.
, 1990, “Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Multilayer Fluids with Surface Tension
,” Phys. Rev. A
1050-2947, 42
(12
), pp. 7211
–7225
.31.
Hann
, S. W.
, 1988, “Onset of Nonlinear Saturation for Rayleigh-Taylor Growth in the Presence of a Full Spectrum of Modes
,” Phys. Rev. A
1050-2947, 39
(11
), pp. 5812
–5825
.32.
Mikaelian
, K. O.
, 1990, “Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and Mixing in Stratified Spherical Shells
,” Phys. Rev. A
1050-2947, 42
(12
), pp. 3400
–3420
.33.
Zhang
, Q.
, and Graham
, M. J.
, 1997, “Scaling Laws for Unstable Interfaces Driven by Strong Shocks in Cylindrical Geometry
,” Phys. Rev. Lett.
0031-9007, 79
(14
), pp. 2674
–2677
.34.
Jacobs
, J. W.
, Jenkins
, D. G.
, Klein
, D. L.
, and Benjamin
, R. F.
, 1995, “Nonlinear Growth of the Shock-Accelerated Instability of a Thin Fluid Layer
,” J. Fluid Mech.
0022-1120, 295
, pp. 23
–42
.35.
Jacobs
, J. W.
, and Collins
, B. D.
, 1999, “Experimental study of the Richtmyer-Meshkov instability of a diffuse interface
,” Proceedings of the 22nd International Symposium on Shock Waves
, Imperical College
, London
.36.
Hertel
, E. S.
, Jr., Bell
, R. L.
, Elrick
, M. G.
, Farnsworth
, A. V.
, Kerley
, G. I.
, McGlaun
, J. M.
, Petney
, S. V.
, Silling
, S. A.
, Taylor
, P. A.
, and Yarrington
, L.
, 1993, “CTH: A Software Family for Multi-Dimensional Shock Physics Analysis
,” Proceedings of the 19th International Symposium on Shock Waves
, Vol. I
, pp. 377
–382
, Marseille, France 26–30. July.37.
Assay
, J. R.
, and Shahinpoor
, M.
, 1993, High-Pressure Shock Compression of Solids
, Springer-Verlag
, Berlin, ISBN 0-387-97964-6.38.
Winfree
, N. A.
, and Kerley
, G. I.
, 1999, “Equation of State model for Tributyl Phosphate
,” Proceedings of the 11th Biennial International Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
, Snowbird, Utah.39.
Reinhart
, W. D.
, Chhabildas
, L. C.
, Winfree
, N. A.
, and Grady
, D. E.
, 1999, “Dynamic Properties of Tributyl Phosphate
,” Proceedings of the 11th Biennial International Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
, Snowbird, Utah.40.
Baumgardner
, J. R.
, Cline
, M. S.
, Johnson
, N. L.
, and Kashiwa
, B. A.
, 1990, “CFDLIB: A Library of Computer Codes for Problems in Computational Fluid Dynamics
,” Los Alamos National Laboratory, Los Alamos, NM. LA-UR-90-1361.41.
Tussing
, R. B.
, 1982, “Accuracy and Response of Tourmaline Gauges for Measurement of Underwater Explosion Phenomena
,” NSWC TR-82-294, Naval Surface Warfare Center, White Oak, MD.42.
Hayami
, R. A.
, 1999, “Liquid Dispersion Characterization Test
,” University of Alabama in Huntsville Aerophysics Research Center. UAH/ARC TR 98-01.43.
Ference
, S. L.
, Borg
, J. P.
, and Cogar
, J. R.
, “Source Term Investigation of TBM Bulk Chemical Target Intercepts: Phase 1 Test Report
, (under review).44.
Ference
, S. L.
, Borg
, J. P.
, and Cogar
, J. R.
, “Source Term Investigation of TBM Bulk Chemical Target Intercepts: Phase I1 Test Report
, (under review).45.
Grady
, D. E.
, 1988, “The Spall Strength of Condensed Matter
,” J. Mech. Phys. Solids
0022-5096, 36
(3
), pp. 353
–384
.46.
Grady
, D. E.
, and Kipp
, M. E.
, 1985, “Geometric Statistics and Dynamic Fragmentation
,” J. Appl. Phys.
0021-8979, 58
(3
), pp. 1210
–12222
.47.
Borg
, J. P.
, Grady
, D.
, and Cogar
, J. R.
, 2001, “Instability and Fragmentation of Expanding Liquid System
,” Int. J. Impact Eng.
0734-743X, 26
, pp. 65
–76
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.