The computational and experimental results of impact loading a thin wall liquid filled cylindrical target within a vacuum chamber are presented. The impact velocity ranges from 2.2 to 4.2kms. Both experimental and computational results are presented. It will be shown that impact dynamics and the early time fluid expansion are well modeled and understood. This includes the mass distribution and resulting expansion velocity. However, the late time dynamics, which includes the liquid breakup and droplet formation process of impacted liquid filled cylinders, is not well understood.

1.
Stepka
,
F. S.
, and
Morse
,
C. R.
, 1963, “
Preliminary Investigation of Catastrophic Fracture of Liquid-Filled Tanks Impacted by High-Velocity Particles
,” NASA TN D-1537 Nasa Leis Research Center.
2.
Stepka
,
F. S.
,
Morse
,
C. R.
, and
Dengler
,
R. P.
, 1965, “
Investigation of Characteristics of Pressure Waves Generated in Water Filled Tanks Impacted by High-Velocity Projectiles
,” NASA TN D-3143 NASA Lewis Research Center, N66-1329.
3.
Morse
,
C. R.
, and
Stepka
,
F. S.
, 1966, “
Effect of Projectile Size and Material on Impact Fracture of Walls of Liquid-Filled Tanks
,” NASA TN D-3627 NASA Lewis Research Center.
4.
Ferguson
,
C. W.
, 1966, “
Hypervelocity Impact Effects on Liquid Hydrogen Tanks
,” NASA CR-54852, NASA Lewis Research Center.
5.
Richardson
,
A. J.
, and
Knepper
,
J. J.
, 1970, “
Hypervelocity Particle Damage Limits for Pressure Vessels
,” Space Division North American Rockwell Corporation, SA 500, NAS 9-150.
6.
Whitney
,
J. P.
, 1993, “
Hypervelocity Impact Tests of Shielded and Unshielded Pressure Vessels
,” NASA Report JSC 32294.
7.
Schafer
,
F. K.
,
Schneider
,
E. E.
, and
Lambert
, 1997, “
Hypervelocity Impacts on Cylindrical Pressure Vessels—Experimental Results and Damage Classification
,”
Proceedings from ASME-PVP Conference
, Orlando, FL, PVP-Vol.
351
, pp.
235
244
.
8.
Friesen
,
L. J.
, 1995, “
Hypervelocity Impact Tests of Shielded and Unshielded Pressure Vessels, Part II
,” NASA Report JSC 27081.
9.
Lee
,
T. W.
, and
Yatteau
,
J. D.
, 1976, “
Hydraulic Ram Investigations
,” US Army Armament research and Development Command, ARBREL-CR-00365, Aberdeen Proving Ground.
10.
Lewis
,
M. W.
, and
Wilson
,
T. L.
, 1997, “
Response of water-filled spherical Vessel to an internal explosion
,” Los Alamos, LA-13240-MS.
11.
Wisotski
,
J.
, 1978, “
Penetration of Water by Rod Type Fragments
,” Denver Research Institute, Report N00123-76-C0166.
12.
Yatteau
,
J. D.
, and
Wisotski
,
J.
, 1978, “
Penetration of Fluid by Rod Type Fragments
,” DRI No. 2710, Denver Research Institute.
13.
Yatteau
,
J. D.
,
Zernow
,
R. H.
,
Dunn
,
J. A.
, and
Wisotski
,
J.
, 1989, “
Fragment Penetration of Fluid-Backed Plates
,” AFATL R 89-59, Air Force Armament Laboratory, Eglin Air Force Base.
14.
Taylor
,
G. I.
, 1950, “
The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Planes I
,”
Proc. R. Soc. London, Ser. A
1364-5021,
201
, pp.
192
196
.
15.
Sharp
,
D. H.
, 1984, “
An Overview of Rayleigh-Taylor Instability
,”
Physica D
0167-2789,
12
, pp.
3
18
.
16.
Richtmyer
,
R. D.
, 1960, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
0010-3640,
XIII
, pp.
297
319
.
17.
Meshkov
,
E. E.
, 1970, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,” NASA Tech. Trans.
F-13
, 074.
18.
Zhang
,
Q.
, and
Sohn
,
S.
, 1996, “
An Analytical Nonlinear Theory of Richtmyer-Meshkov Instability
,”
Phys. Lett. A
0375-9601,
212
, pp.
149
155
.
19.
Holmes
,
R. L.
,
Dimonte
,
G.
,
Fryxell
,
B.
,
Gittings
,
M. L.
,
Grove
,
J. W.
,
Schneider
,
M.
,
Sharp
,
D. H.
,
Velikovich
,
A. L.
,
Weaver
,
R. P.
, and
Zhang
,
Q.
, 1999, “
Richtmyer-Meshkov Instability Growth: Experiment, Simulation and Theory
,”
J. Fluid Mech.
0022-1120,
389
, pp.
55
79
.
20.
Prasad
,
J. K.
,
Rasheed
,
A.
,
Kumar
,
S.
, and
Sturtevant
,
B.
, 2000, “
The Late-Time Development of the Richtmyer-Meshkov Instability
,”
Phys. Fluids
1070-6631,
12
(
8
), pp.
2108
2115
.
21.
Bellman
,
R.
, and
Pennington
,
R. H.
, 1954, “
Effects of Surface Tension and Viscosity on Taylor Instability
,”
Q. Appl. Math.
0033-569X,
12
, pp.
151
162
.
22.
Chandrasekhar
,
S.
, 1961,
Hydrodynamic and Hydrodynamic Instability
,
Oxford University Press
, New York.
23.
Menikoff
,
R.
,
Mjolsness
,
R. C.
,
Sharp
,
D. H.
, and
Zemach
,
C.
, 1977, “
Unstable Normal Mode for Rayleigh-Taylor Instabilities in Viscous Fluids
,”
Phys. Fluids
0031-9171,
20
(
12
), pp.
2000
2004
.
24.
Mulser
,
P.
, 1987, “
Reduction of Rayleigh-Taylor Growth due to Viscosity Effects
,”
Laser Part. Beams
0263-0346,
6
(
1
), pp.
119
120
.
25.
Plesset
,
M. S.
, 1954, “
On the Stability of Fluid Flows with Spherical Symmetry
,”
J. Appl. Phys.
0021-8979,
25
(
1
), pp.
96
106
.
26.
Berkoff
,
G.
, 1954, “
Note on Taylor Instability
,”
Q. Appl. Math.
0033-569X,
12
(
3
), pp.
306
309
.
27.
Zhang
,
Q.
, and
Graham
,
M. J.
, 1998, “
A Numerical Study of Richtmyer-Meshkov Instability Driven by Cylindrical Shocks
,”
Phys. Fluids
1070-6631,
10
(
4
), pp.
974
992
.
28.
Jones
,
M. A.
, and
Jacobs
,
J. W.
, 1997, “
A Membraneless Experiment for the Study of Richtmyer-Meshkov Instability of a Shock-Accelerated Gas Interface
,”
Phys. Fluids
1070-6631,
9
, pp.
3078
3085
.
29.
Vetter
,
M.
, and
Sturtevant
,
B.
, 1994, “
Experiments of the Richtmyer-Meshkov Instability of an air∕SF6 Interface
,”
Shock Waves
0938-1287,
4
, pp.
247
252
.
30.
Mikaelian
,
K. O.
, 1990, “
Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Multilayer Fluids with Surface Tension
,”
Phys. Rev. A
1050-2947,
42
(
12
), pp.
7211
7225
.
31.
Hann
,
S. W.
, 1988, “
Onset of Nonlinear Saturation for Rayleigh-Taylor Growth in the Presence of a Full Spectrum of Modes
,”
Phys. Rev. A
1050-2947,
39
(
11
), pp.
5812
5825
.
32.
Mikaelian
,
K. O.
, 1990, “
Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and Mixing in Stratified Spherical Shells
,”
Phys. Rev. A
1050-2947,
42
(
12
), pp.
3400
3420
.
33.
Zhang
,
Q.
, and
Graham
,
M. J.
, 1997, “
Scaling Laws for Unstable Interfaces Driven by Strong Shocks in Cylindrical Geometry
,”
Phys. Rev. Lett.
0031-9007,
79
(
14
), pp.
2674
2677
.
34.
Jacobs
,
J. W.
,
Jenkins
,
D. G.
,
Klein
,
D. L.
, and
Benjamin
,
R. F.
, 1995, “
Nonlinear Growth of the Shock-Accelerated Instability of a Thin Fluid Layer
,”
J. Fluid Mech.
0022-1120,
295
, pp.
23
42
.
35.
Jacobs
,
J. W.
, and
Collins
,
B. D.
, 1999, “
Experimental study of the Richtmyer-Meshkov instability of a diffuse interface
,”
Proceedings of the 22nd International Symposium on Shock Waves
,
Imperical College
,
London
.
36.
Hertel
,
E. S.
, Jr.
,
Bell
,
R. L.
,
Elrick
,
M. G.
,
Farnsworth
,
A. V.
,
Kerley
,
G. I.
,
McGlaun
,
J. M.
,
Petney
,
S. V.
,
Silling
,
S. A.
,
Taylor
,
P. A.
, and
Yarrington
,
L.
, 1993, “
CTH: A Software Family for Multi-Dimensional Shock Physics Analysis
,”
Proceedings of the 19th International Symposium on Shock Waves
, Vol.
I
, pp.
377
382
, Marseille, France 26–30. July.
37.
Assay
,
J. R.
, and
Shahinpoor
,
M.
, 1993,
High-Pressure Shock Compression of Solids
,
Springer-Verlag
, Berlin, ISBN 0-387-97964-6.
38.
Winfree
,
N. A.
, and
Kerley
,
G. I.
, 1999, “
Equation of State model for Tributyl Phosphate
,”
Proceedings of the 11th Biennial International Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
, Snowbird, Utah.
39.
Reinhart
,
W. D.
,
Chhabildas
,
L. C.
,
Winfree
,
N. A.
, and
Grady
,
D. E.
, 1999, “
Dynamic Properties of Tributyl Phosphate
,”
Proceedings of the 11th Biennial International Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
, Snowbird, Utah.
40.
Baumgardner
,
J. R.
,
Cline
,
M. S.
,
Johnson
,
N. L.
, and
Kashiwa
,
B. A.
, 1990, “
CFDLIB: A Library of Computer Codes for Problems in Computational Fluid Dynamics
,” Los Alamos National Laboratory, Los Alamos, NM. LA-UR-90-1361.
41.
Tussing
,
R. B.
, 1982, “
Accuracy and Response of Tourmaline Gauges for Measurement of Underwater Explosion Phenomena
,” NSWC TR-82-294, Naval Surface Warfare Center, White Oak, MD.
42.
Hayami
,
R. A.
, 1999, “
Liquid Dispersion Characterization Test
,” University of Alabama in Huntsville Aerophysics Research Center. UAH/ARC TR 98-01.
43.
Ference
,
S. L.
,
Borg
,
J. P.
, and
Cogar
,
J. R.
, “
Source Term Investigation of TBM Bulk Chemical Target Intercepts: Phase 1 Test Report
, (under review).
44.
Ference
,
S. L.
,
Borg
,
J. P.
, and
Cogar
,
J. R.
, “
Source Term Investigation of TBM Bulk Chemical Target Intercepts: Phase I1 Test Report
, (under review).
45.
Grady
,
D. E.
, 1988, “
The Spall Strength of Condensed Matter
,”
J. Mech. Phys. Solids
0022-5096,
36
(
3
), pp.
353
384
.
46.
Grady
,
D. E.
, and
Kipp
,
M. E.
, 1985, “
Geometric Statistics and Dynamic Fragmentation
,”
J. Appl. Phys.
0021-8979,
58
(
3
), pp.
1210
12222
.
47.
Borg
,
J. P.
,
Grady
,
D.
, and
Cogar
,
J. R.
, 2001, “
Instability and Fragmentation of Expanding Liquid System
,”
Int. J. Impact Eng.
0734-743X,
26
, pp.
65
76
.
You do not currently have access to this content.