Steady laminar mixed convection flow and heat transfer to Newtonian and power-law fluids from a heated square cylinder has been analyzed numerically. The full momentum and energy equations along with the Boussinesq approximation to simulate the buoyancy effects have been solved. A semi-explicit finite volume method with nonuniform grid has been used for the range of conditions as: Reynolds number 1–30, power-law index: 0.8–1.5, Prandtl number 0.7–100 (Pe3000) for Richardson number 0–0.5 in an unbounded configuration. The drag coefficient and the Nusselt number have been reported for a range of values of the Reynolds number, Prandtl number, and Richardson number for Newtonian, shear-thickening (n>1) and shear-thinning (n<1) fluids. In addition, detailed streamline and isotherm contours are also presented to show the complex flow field, especially in the rear of the cylinder. The effects of Prandtl number and of power-law index on the Nusselt number are found to be more pronounced than that of buoyancy parameter (Ri0.5) for a fixed Reynolds number in the steady cross-flow regime (Re30).

1.
Dhiman
,
A. K
,
Chhabra
,
R. P.
,
Sharma
,
A.
, and
Eswaran
,
V.
, 2006, “
Effects of Reynolds and Prandtl Numbers on the Heat Transfer Across a Square Cylinder in the Steady Flow Regime
,”
Numer. Heat Transfer, Part A
1040-7782,
49
, pp.
717
731
.
2.
Dhiman
,
A. K
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
, 2006, “
Steady Flow of Power-Law Fluids Across a Square Cylinder
,”
Chem. Eng. Res. Des.
0263-8762,
84
(
A4
), pp.
300
310
.
3.
Dhiman
,
A. K
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
, 2005, “
Flow and Heat Transfer Across a Confined Square Cylinder in the Steady Flow Regime: Effect of Peclet Number
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4598
4614
.
4.
Dhiman
,
A. K.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
, 2006, “
Effect of Peclet Number on the Heat Transfer Across a Square Cylinder in the Steady Confined Channel Flow Regime
,”
Proc. 18th National and 7th ISHMT-ASME Heat and Mass Transfer Conf.
, Indian Institute of Technology, Guwahati, India, January 4–6.
5.
Paliwal
,
B.
,
Sharma
,
A.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
, 2003, “
Power-Law Fluid Flow Past a Square Cylinder: Momentum and Heat Transfer Characteristics
,”
Chem. Eng. Sci.
0009-2509,
58
, pp.
5315
5329
.
6.
Badr
,
H. M.
, 1983, “
A Theoretical Study of Laminar Mixed Convection From a Horizontal Cylinder in a Cross Stream
,”
Int. J. Heat Mass Transfer
0017-9310,
26
, pp.
639
653
.
7.
Badr
,
H. M.
, 1984, “
Laminar Combined Convection From a Horizontal Cylinder—Parallel and Contra Flow Regimes
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
15
27
.
8.
Noto
,
K.
,
Ishida
,
H.
, and
Matsumoto
,
R.
, 1985, “
A Breakdown of the Karman Vortex Street due to the Natural Convection
,”
Flow Visualization
III
,
Springer
,
New York
, pp.
348
352
.
9.
Chang
,
K.-S.
, and
Sa
,
J.-Y.
, 1990, “
The Effect of Buoyancy on Vortex Shedding in the Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
220
, pp.
253
266
.
10.
Hatanaka
,
K.
, and
Kawahara
,
M.
, 1995, “
A Numerical Study of Vortex Shedding Around a Heated∕Cooled Circular Cylinder by the Three-Step Taylor-Gaylerkin Method
,”
Int. J. Numer. Methods Fluids
0271-2091,
21
, pp.
857
867
.
11.
Patnaik
,
B. S. V.
,
Narayana
,
P. S. A.
, and
Seetharamu
,
K. N.
, 1999, “
Numerical Simulation of Vortex Shedding Past a Circular Cylinder Under the Influence of Buoyancy
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3495
3507
.
12.
Ahmad
,
R. A.
, and
Qureshi
,
Z. H.
, 1992, “
Laminar Mixed Convection From a Uniform Heat Flux Horizontal Cylinder in a Cross-Flow
,”
J. Thermophys. Heat Transfer
0887-8722,
6
, pp.
277
287
.
13.
Maas
,
W. J. P. M.
,
Rindt
,
C. C. M.
, and
van Steenhoven
,
A. A.
, 2004, “
The influence of heat on the 3-D transition of the von Karman vortex street
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3069
3081
.
14.
Ren
,
M.
,
Rindt
,
C. C. M.
, and
van Steenhoven
,
A. A.
, 2004, “
3-D vortices in the wake flow behind a heated cylinder
,”
Int. J. Transp. Phenom.
1028-6578,
6
, pp.
177
187
.
15.
Abu-Hijleh
,
B. A. K
, 1999, “
Laminar Mixed Convection Correlations for an Isothermal Cylinder in Cross Flow at Different Angles of Attack
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
1383
1388
.
16.
Wang
,
A. B.
,
Travnicek
,
Z.
, and
Chia
,
K. C.
, 2000, “
On the Relationship of Effective Reynolds Number and Strouhal Number for the Laminar Vortex Shedding of a Heated Circular Cylinder
,”
Phys. Fluids
1070-6631,
12
, pp.
1401
1410
.
17.
Zdravkovich
,
M. M.
, 1997,
Flow Around Circular Cylinders: Fundamentals
,
1
,
Oxford University Press
,
New York
.
18.
Zdravkovich
,
M. M.
, 2003,
Flow Around Circular Cylinders: Applications
,
2
,
Oxford University Press
,
New York
.
19.
Sharma
,
A.
, and
Eswaran
,
V.
, 2004, “
Effect of Aiding and Opposing Buoyancy on the Heat and Fluid Flow Across a Square Cylinder at Re=100
,”
Numer. Heat Transfer, Part A
1040-7782,
45
, pp.
601
624
.
20.
Bhattacharyya
,
S.
, and
Mahapatra
,
S.
, 2005, “
Vortex Shedding Around a Heated Square Cylinder Under the Influence of Buoyancy
,”
Heat Mass Transfer
0947-7411,
41
, pp.
824
833
.
21.
Biswas
,
G.
,
Laschefski
,
H.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
, 1990, “
Numerical Investigation of Mixed Convection Heat Transfer in a Channel With a Built-In Square Cylinder
,”
Numer. Heat Transfer, Part A
1040-7782,
18
, pp.
173
188
.
22.
Turki
,
S.
,
Abbassi
,
H.
, and
Nasrallah
,
S. B.
, 2003, “
Two-Dimensional Laminar Fluid Flow and Heat Transfer in a Channel With a Built-In Heated Square Cylinder
,”
Int. J. Therm. Sci.
1290-0729,
42
, pp.
1105
1113
.
23.
Sharma
,
A.
, and
Eswaran
,
V.
, 2005, “
Effect of Channel-Confinement and Aiding∕Opposing Buoyancy on the Two-Dimensional Laminar Flow and Heat Transfer Across a Square Cylinder
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5310
5322
.
24.
Anjaiah
,
N.
,
Dhiman
,
A. K.
, and
Chhabra
,
R. P.
, 2006, “
Mixed Convection Heat Transfer From a Square Cylinder to Power-Law Fluids in Cross-Flow
,”
Proceeding’s Symposium on Flows in Manufacturing Processes, ASME Joint U.S.–European Fluids Engineering Summer Meeting
,
Miami, FL
, July 17–20.
25.
Eswaran
,
V.
, and
Prakash
,
S.
, 1998, “
A Finite Volume Method for Navier-Strokes Equations
,”
Proc. 3rd Asian CFD Conference
,
Bangalore, India
, Dec. 7–11, Vol.
1
, pp.
127
136
.
26.
Sharma
,
A.
, and
Eswaran
,
V.
, 2003, “
A Finite Volume Method
Computational Fluid Flow and Heat Transfer
,
K.
Muralidhar
and
T.
Sundararajan
, eds.,
Narosa Publishing House
,
New Delhi, India
, pp.
445
482
.
27.
Thompson
,
J. F.
,
Warsi
,
Z. U. A.
, and
Mastin
,
C. W.
, 1985,
Numerical Grid Generation: Foundation and Applications
,
Elsevier Science
,
New York
, pp.
305
310
.
You do not currently have access to this content.