Abstract

A simple model based on the resolution of Rayleigh equation is used to analyze thermal effects in cavitation. Two different assumptions are considered for the modeling of heat transfer toward the liquid∕vapor interface. One is based upon a convective type approach using a convection heat transfer coefficient or the equivalent Nusselt number. The other one is based upon the resolution of the heat diffusion equation in the liquid surrounding the bubble. This conductive-type approach requires one to specify the eddy thermal diffusivity or the equivalent Peclet number. Both models are applied to a cavitating inducer. The basic pressure distribution on the blades is determined from a potential flow computation in a two-dimensional cascade of flat plates. The sheet cavity, which develops from the leading edge, is approximated by the envelope of a hemispherical bubble traveling on the suction side of the blade. Cavity shape and temperature distribution predicted by both models are compared. The evolutions of cavity length with the cavitation number for cold water (without thermal effects) and for Refrigerant 114 at two different temperatures is compared to experimental data. Such a simple model is easy to apply and appears to be quite pertinent for the analysis of thermal effects in a cavitating inducer.

References

1.
Stahl
,
H. A.
,
Stepanoff
,
A. J.
, and
Phillipsburg
,
N. J.
, 1956, “
Thermodynamic Aspects of Cavitation in Centrifugal Pumps
,”
ASME J. Basic Eng.
0021-9223, November 1956, pp.
1691
1693
.
2.
Stepanoff
,
A. J.
, 1964, “
Cavitation Properties of Liquids
,”
J. Eng. Power
0022-0825, pp.
195
200
.
3.
Brennen
,
C. E.
, 1995,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New york
.
4.
Brennen
,
C. E.
, 1994,
Hydrodynamics of Pumps
,
Oxford University Press
,
New Yark
.
5.
Kato
,
H.
, 1984, “
Thermodynamic Effect on Incipient and Developed Sheet Cavitation
,”
International Symposium on Cavitation Inception
, New Orleans, Dec. 9–14, Vol.
16
, pp.
127
136
.
6.
Hord
,
J.
, “
Cavitation in Liquid Cryogens
,” NASA Report No. CR-2054;
1972, NASA Report No. CR-2156;
1973, NASA Report No. CR-2242;
1974, NASA Report No. CR-2448.
7.
Watanabe
,
S.
,
Hidaka
,
T.
,
Horiguchi
,
H.
,
Furukawa
,
A.
, and
Tsujimoto
,
Y.
, 2005, “
Steady Analysis of Thermodynamic Effect of Partial Cavitation Using Singularity Method
,”
2005 ASME Fluids Engineering Division Summer Meeting and Exhibition
, Houston, TX, Jun. 19–23.
8.
Fruman
,
D. H.
,
Benmansour
,
I.
, and
Sery
,
R.
, 1991, “
Estimation of the Thermal Effects on Cavitation of Cryogenic Liquids
,” 1991,
Cavitation and Multiphase Flow Forum
, ASME FED,
109
, pp.
93
96
.
9.
Fruman
,
D. H.
,
Reboud
,
J. L.
, and
Stutz
,
B.
, 1999, “
Estimation of Thermal Effects in Eavitation of Thermosensible Liquids
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3195
3204
.
10.
Billet
,
M. L.
, 1970, “
Thermodynamic Effects on Developed Cavitation in Water and Freon 113
,” MS thesis, The Pennsylvania State University.
11.
Billet
,
M. L.
,
Holl
,
J. W.
, and
Weir
,
D. S.
, 1981 “
Correlations of Thermodynamic Effects for Developed Cavitation
,”
J. Fluids Eng.
0098-2202,
103
, pp.
534
542
.
12.
Holl
,
J. W.
,
Billet
,
M. L.
, and
Weir
,
D. S.
, 1975, “
Thermodynamic Effects on Developed Cavitation
,
J. Fluids Eng.
0098-2202,
97
, pp.
507
514
.
13.
Rapposelli
,
E.
, and
d’Agostino
,
L.
, 2003, “
A Barotropic Cavitation Model with Thermodynamic Effects
,
Fifth International Symposium on Cavitation
, Osaka, Japan, Nov. 1–4.
14.
Rolland
,
J.
,
Boitel
,
G.
,
Barre
,
S.
,
Goncalves
,
E.
, and
Fortes
,
Patella R.
, 2006, “
Experiments and Modelling of Cavitating Flows in Venturi-Part I: Stable Cavitation
,”
Sixth International Symposium on Cavitation
, Wageningen, The Netherlands, Sept.
15.
Tani
,
N.
, and
Nagashima
,
T.
, “
Numerical Analysis of Cryogenic Cavitating Flow on Hydrofoil: Comparison Between Water and Cryogenic Fluids
,”
Fourth International Contevence on Launcher Technology
, Liege, Belgium, Dec. 3–6.
16.
Ahuja
,
V.
, and
Hosangadi
,
A.
, 2006, “
A Numerical Study of Cavitation in Cryogenic Fluids. Part I: Mean Flow Parametric Studies
,”
Sixth International Symposium on Cavitation
, Wageningen, The Netherlands, Sept.
17.
Hosangadi
,
A.
, and
Ahuja
,
V.
, 2006, ”
A Numerical Study of Cavitation in Cryogenic Fluids. Part II: New unsteady Model for Dense Cloud Cavitation
,”
Sixth International Symposium on Cavitation
, Wageningen, The Netherlands, Sept.
18.
Hosangadi
,
A.
, and
Ahuja
,
V.
, 2005, “
Numerical Study of Cavitation in Cryogenic Fluids
,”
J. Fluids Eng.
0098-2202,
127
, pp.
267
281
.
19.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
, 1992, “
A New Modeling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
0022-1120,
240
, pp.
59
96
.
20.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
, 2002, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
J. Fluids Eng.
0098-2202,
124
, pp.
617
624
.
21.
Franc
,
J. P.
, and
Michel
,
J. M
, 2004,
Fundamentals of Cavitation
,
Kluwer Academic
, Dordrech;
Franc
,
J. P.
,
Janson
,
E.
,
Morel
,
P.
,
Rebattet
,
C.
, and
Riondet
,
M.
, 2001, “
Visualizations of Leading Edge Cavitation in an Inducer at Different Temperatures
,” Fourth International Symposium on Cavitation, Pasadena, CA, Jun. 20–23.
22.
Franc
,
J. P.
,
Rebattet
,
C.
, and
Coulon
,
A.
, 2004, “
An Experimental Investigation of Thermal Effects In a Cavitating Inducer
,”
J. Fluids Eng.
0098-2202,
126
, pp.
716
723
.
23.
Plesset
,
M. S.
, and
Zwick
,
S. A.
, 1952, “
A Nonsteady Heat Diffusion Problem with Spherical Symmetry
,”
J. Appl. Phys.
0021-8979,
23
(1)
, pp.
95
98
.
24.
Plesset
,
M. S.
, and
Zwick
,
S. A.
, 1954, “
The Growth of Vapour Bubbles in Superheated Liquids
,”
J. Appl. Phys.
0021-8979,
25
(4)
, pp.
493
500
.
25.
Zwick
,
S. A.
, and
Plesset
,
M. S.
, 1955, “
On the Dynamics of Small Vapour Bubbles in Liquids
,”
J. Math. Phys. (Cambridge, Mass.)
0097-1421,
33
, pp.
308
330
.
26.
Fortin
,
A
, 2002,
Analyse numérique
,
Internationales Polytechniques
, Montreal.
You do not currently have access to this content.