This paper presents a new formulation of the 2D shallow water equations, based on which a numerical model (referred to as NewChan) is developed for simulating complex flows in nonuniform open channels. The new shallow water equations mathematically balance the flux and source terms and can be directly applied to predict flows over irregular bed topography without any necessity for a special numerical treatment of source terms. The balanced governing equations are solved on uniform Cartesian grids using a finite-volume Godunov-type scheme, enabling automatic capture of transcritical flows. A high-order numerical scheme is achieved using a second-order Runge–Kutta integration method. A very simple immersed boundary approach is used to deal with an irregular domain geometry. This method can be easily implemented in a Cartesian model and does not have any influence on computational efficiency. The numerical model is validated against several benchmark tests. The computed results are compared with analytical solutions, previously published predictions, and experimental measurements and excellent agreements are achieved.

1.
Glaister
,
P.
, 1993, “
Flux Difference Splitting for Open-Channel Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
16
, pp.
629
654
.
2.
Molls
,
T.
, and
Chaudhry
,
M. H.
, 1995, “
Depth-Averaged Open-Channel Flow Model
,”
J. Hydraul. Eng.
0733-9429,
121
(
6
), pp.
453
465
.
3.
Meselhe
,
E. A.
,
Sotiropoulos
,
F.
, and
Holly
,
F. M.
, Jr.
, 1997, “
Numerical Simulation of Transcritical Flow in Open Channels
,”
J. Hydraul. Eng.
0733-9429,
123
(
9
), pp.
774
783
.
4.
Delis
,
A. I.
, and
Skeels
,
C. P.
, 1998, “
TVD Schemes for Open Channel Flow
,”
Int. J. Numer. Methods Fluids
0271-2091,
26
, pp.
791
809
.
5.
Hu
,
K.
,
Mingham
,
C. G.
, and
Causon
,
D. M.
, 1998, “
A Bore-Capturing Finite Volume Method for Open-Channel Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
28
, pp.
1241
1261
.
6.
Zhou
,
J. G.
, and
Stansby
,
P. K.
, 1999, “
2D Shallow Water Flow Model for the Hydraulic Jump
,”
Int. J. Numer. Methods Fluids
0271-2091,
29
, pp.
375
387
.
7.
Causon
,
D. M.
,
Mingham
,
C. G.
, and
Ingram
,
D. M.
, 1999, “
Advances in Calculation Methods for Supercritical Flow in Spillway Channels
,”
J. Hydraul. Eng.
0733-9429,
125
(
10
), pp.
1039
1050
.
8.
Yang
,
G.
,
Causon
,
D. M.
,
Ingram
,
D. M.
,
Saunders
,
R.
, and
Batten
,
P.
, 1997, “
A Cartesian Cut Cell Method for Compressible Flows Part A: Static Body Problems
,”
Aeronaut. J.
0001-9240,
101
(
1002
), pp.
47
56
.
9.
Causon
,
D. M.
,
Ingram
,
D. M.
,
Mingham
,
C. G.
,
Yang
,
G.
, and
Pearson
,
R. V.
, 2000, “
Calculation of Shallow Water Flows Using a Cartesian Cut Cell Approach
,”
Adv. Water Resour.
0309-1708,
23
, pp.
545
562
.
10.
Liang
,
Q.
,
Zang
,
J.
,
Borthwick
,
A. G. L.
, and
Taylor
,
P. H.
, 2007, “
Shallow Flow Simulation on Dynamically Adaptive Cut-Cell Quadtree Grids
,”
Int. J. Numer. Methods Fluids
0271-2091,
53
(
12
), pp.
1777
1799
.
11.
Bermudez
,
A.
, and
Vázquez
,
M. E.
, 1994, “
Upwind Methods for Hyperbolic Conservation Laws With Source Terms
,”
Comput. Fluids
0045-7930,
23
(
8
), pp.
1049
1071
.
12.
LeVeque
,
R. J.
, 1998, “
Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods: The Quasi-Steady Wave-Propagation Algorithm
,”
J. Comput. Phys.
0021-9991,
146
(
1
), pp.
346
365
.
13.
Vázquez-Cendón
,
M. E.
, 1999, “
Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels With Irregular Geometry
,”
J. Comput. Phys.
0021-9991,
148
(
2
), pp.
497
526
.
14.
Hubbard
,
M. E.
, and
García-Navarro
,
P.
, 2000, “
Flux Difference Splitting and the Balancing of Source Terms and Flux Gradients
,”
J. Comput. Phys.
0021-9991,
165
(
1
), pp.
89
125
.
15.
García-Navarro
,
P.
, and
Vázquez-Cendón
,
M. E.
, 2000, “
On Numerical Treatment of the Source Terms in the Shallow Water Equations
,”
Comput. Fluids
0045-7930,
29
, pp.
951
979
.
16.
Zhou
,
J. G.
,
Causon
,
D. M.
,
Mingham
,
C. G.
, and
Ingram
,
D. M.
, 2001, “
The Surface Gradient Method for the Treatment of Source Terms in the Shallow-Water Equations
,”
J. Comput. Phys.
0021-9991,
168
(
1
), pp.
1
25
.
17.
Rogers
,
B. D.
,
Borthwick
,
A. G. L.
, and
Taylor
,
P. H.
, 2003, “
Mathematical Balancing of Flux Gradient and Source Terms Prior to Using Roe’S Approximate Riemann Solver
,”
J. Comput. Phys.
0021-9991,
192
(
2
), pp.
422
451
.
18.
Brufau
,
P.
,
García-Navarro
,
P.
, and
Vázquez-Cendón
,
M. E.
, 2002, “
A Numerical Model for the Flooding and Drying of Irregular Domains
,”
Int. J. Numer. Methods Fluids
0271-2091,
39
, pp.
247
275
.
19.
Begnudelli
,
L.
, and
Sanders
,
B. F.
, 2006, “
Unstructured Grid Finite-Volume Algorithm for Shallow-Water Flow and Scalar Transport With Wetting and Drying
,”
J. Hydraul. Eng.
0733-9429,
132
(
4
), pp.
371
384
.
20.
Toro
,
E. F.
, 2001,
Shock-Capturing Methods for Free-Surface Shallow Flows
,
Wiley
,
Chichester
.
21.
Liang
,
Q.
,
Borthwick
,
A. G. L.
, and
Stelling
,
G.
, 2004, “
Simulation of Dam- and Dyke-Break Hydrodynamics on Dynamically Adaptive Quadtree Grids
,”
Int. J. Numer. Methods Fluids
0271-2091,
46
(
2
), pp.
127
162
.
22.
Ye
,
T.
,
Mittal
,
R.
,
Udaykumar
,
H. S.
, and
Shyy
,
W.
, 1999, “
An Accurate Cartesian Grid Method for Viscous Incompressible Flows With Complex Immersed Boundaries
,”
J. Comput. Phys.
0021-9991,
156
(
2
), pp.
209
240
.
23.
Tseng
,
Y.-H.
, and
Ferziger
,
J. H.
, 2003, “
A Ghost-Cell Immersed Boundary Method for Flow in Complex Geometry
,”
J. Comput. Phys.
0021-9991,
92
, pp.
593
623
.
24.
1997,
Proceedings of the Second Workshop on Dam-Break Wave Simulation
, edited by
N.
Goutal
and
F.
Maurel
, Départment Laboratoire National d’Hydraulique, Groupe Hydraulique Fluviale Electricité de France, France, Paper No. HE 43/97/016/B.
25.
Rogers
,
B. D.
,
Fujihara
,
M.
, and
Borthwick
,
A. G. L.
, 2001, “
Adaptive Q-Tree Godunov-Type Scheme for Shallow Water Equations
,”
Int. J. Numer. Methods Fluids
0271-2091,
35
, pp.
247
280
.
26.
Chow
,
V. T.
, 1959,
Open Channel Hydraulics
,
McGraw-Hill
,
New York
.
27.
Goutal
,
N.
, and
Maurel
,
F.
, 2002, “
A Finite Volume Solver for 1D Shallow-Water Equations Applied to an Actual River
,”
Int. J. Numer. Methods Fluids
0271-2091,
38
, pp.
1
19
.
You do not currently have access to this content.