This study focuses on Nakayama and Kuwahara’s two-equation turbulence model and its modifications, previously proposed for flows in porous media, on the basis of the volume averaging theory. Nakayama and Kuwahara’s model is generalized so that it can be applied to most complex turbulent flows such as cross flows in banks of cylinders and packed beds, and longitudinal flows in channels, pipes, and rod bundles. For generalization, we shall reexamine the extra production terms due to the presence of the porous media, appearing in the transport equations of turbulence kinetic energy and its dissipation rate. In particular, we shall consider the mean flow kinetic energy balance within a pore, so as to seek general expressions for these additional production terms, which are valid for most kinds of porous media morphology. Thus, we establish the macroscopic turbulence model, which does not require any prior microscopic numerical experiments for the structure. Hence, for the given permeability and Forchheimer coefficient, the model can be used for analyzing most complex turbulent flow situations in homogeneous porous media without a detailed morphological information. Preliminary examination of the model made for the cases of packed bed flows and longitudinal flows through pipes and channels reveals its high versatility and performance.

1.
Antohe
,
B. V.
, and
Lage
,
J. L.
, 1997, “
A General Two-Equation Macroscopic Turbulence Model for Incompressible Flow in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
13
, pp.
3013
3024
.
2.
Vafai
,
K.
, and
Tien
,
C. L.
, 1981, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
24
, pp.
195
203
.
3.
Nakayama
,
A.
, and
Kuwahara
,
F.
, 1999, “
A Macroscopic Turbulence Model for Flow in a Porous Medium
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
427
433
.
4.
Masuoka
,
T.
, and
Takatsu
,
Y.
, 1996, “
Turbulence Model for Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
2803
2809
.
5.
Pedras
,
M. H. J.
, and
de Lemos
,
M. S. J.
, 2001, “
Macroscopic Turbulence Modeling for Incompressible Flow Through Undeformable Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1081
1093
.
6.
Nield
,
D. A.
, 2001, “
Alternative Models of Turbulence in Porous Media and Related Matters
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
928
931
.
7.
de Lemos
,
M. S. J.
, 2006,
Turbulence in Porous Media
,
Elsevier
,
Amsterdam
.
8.
Guo
,
B.
,
Yu
,
A.
,
Wright
,
B.
, and
Zulli
,
P.
, 2003, “
Comparison of Several Turbulence Models Applied to the Simulation of Gas Flow in a Packed Bed
,”
Proceedings of the Third International Conference on CFD in the Minerals and Process Industries
,
CSIRO
,
Melbourne, Australia
, Dec. 10–12, pp.
509
514
.
9.
Guo
,
B.
,
Yu
,
A.
,
Wright
,
B.
, and
Zulli
,
P.
, 2006, “
Simulation of Turbulent Flow in a Packed Bed
,”
Chem. Eng. Technol.
0930-7516,
29
, pp.
596
603
.
10.
DesJardin
,
P. E.
,
Nelsen
,
J. M.
,
Gritzo
,
L. A.
,
Keyser
,
D. R.
,
Ghee
,
T. A.
,
Disimile
,
P. J.
, and
Tucker
,
J. R.
, 2001, “
Towards Subgrid Scale Modeling of Suppressant Flow in Engine Nacelle Clutter
,”
Halon Options Technical Working Conference
,
Albuquerque, NM
, Apr. 24–26, pp.
99
110
.
11.
Chandesris
,
M.
,
Serre
,
G.
, and
Sagaut
,
P.
, 2006, “
A Macroscopic Turbulence Model for Flow in Porous Media Suited for Channel, Pipe, and Rod Bundle Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2739
2750
.
12.
Alvarez
,
G.
, and
Flick
,
D.
, 2007, “
Modelling Turbulent Flow and Heat Transfer Using Macro-Porous Media Approach Used to Predict Cooling Kinetics of Stack of Food Products
,”
J. Food. Eng.
0260-8774,
80
, pp.
391
401
.
13.
Hoffmann
,
M. R.
, 2004, “
Application of a Simple Space-Time Averaged Porous Media Model to Flow in Densely Vegetated Channels
,”
J. Porous Media
1091-028X,
7
, pp.
183
191
.
14.
Pinson
,
F.
,
Gregoire
,
O.
, and
Simonin
,
O.
, 2006, “
Macro-Scale Modeling of Turbulence Based on a Two Scale Analysis in Porous Media
,”
Int. J. Heat Fluid Flow
0142-727X,
27
, pp.
955
966
.
15.
Takeda
,
K.
, 1994, “
Mathematical Modeling of Pulverized Coal Combustion in a Blast Furnace
,” Ph.D. thesis, Imperial College, London.
16.
Nakayama
,
A.
, 1995,
PC-Aided Numerical Heat Transfer and Convective Flow
,
CRC
,
Boca Raton, FL
.
17.
Kuwahara
,
F.
,
Kameyama
,
Y.
,
Yamashita
,
S.
, and
Nakayama
,
A.
, 1998, “
Numerical Modeling of Turbulent Flow in Porous Media Using a Spatially Periodic Array
,”
J. Porous Media
1091-028X,
1
, pp.
47
55
.
18.
Fand
,
R. M.
,
Kim
,
B. Y. K.
,
Lam
,
A. C. C.
, and
Phan
,
R. T.
, 1987, “
Resistance to Flow of Fluids Through Simpae and Complex Porous Media Whose Matrices are Composed of Randomly Packed Spheres
,”
ASME Trans. J. Fluids Eng.
0098-2202,
109
, pp.
268
274
.
19.
Kuwahara
,
F.
,
Yamane
,
T.
, and
Nakayama
,
A.
, 2006, “
Large Eddy Simulation of Turbulent Flow in Porous Media
,”
Int. Commun. Heat Mass Transfer
0735-1933,
33
, pp.
411
418
.
20.
Bey
,
O.
, and
Eigenberger
,
G.
, 1997, “
Fluid Flow Through Catalyst Filled Tubes
,”
Chem. Eng. Sci.
0009-2509,
52
, pp.
1365
1376
.
21.
Chen
,
Y. S.
, and
Kim
,
S. W.
, 1987, “
Computation of Turbulent Flows, Using an Extended k‐ε Turbulence Closure Model
,” NASA CR-179204.
22.
Tennekes
,
H.
, and
Lumley
,
J. L.
, 1972,
A First Course in Turbulence
,
MIT
,
Cambridge
, pp.
62
63
.
23.
Townsend
,
A. A.
, 1961, “
Equilibrium Layers and Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
11
, pp.
97
120
.
24.
Kuwahara
,
F.
,
Nakayama
,
A.
, and
Koyama
,
H.
, 1996, “
A Numerical Study of Thermal Dispersion in Porous Media
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
756
761
.
25.
Kaviany
,
M.
, 1991,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
, pp.
42
49
.
26.
Ergun
,
S.
, 1952, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
89
94
.
27.
Comte-Bellot
,
G.
, 1965, “
Ecoulement Turbulent Entre Deux Parois Paralleles
,”
Publications Scientifiques et Techniques du Ministere de l’Air
, No. 419.
28.
Perry
,
A. E.
,
Henbest
,
S. M.
, and
Chong
,
M. S.
, 1986, “
A Theoretical and Experimental Study of Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
165
, pp.
163
199
.
You do not currently have access to this content.