Accuracy and reliability of large-eddy simulation data in a really complex industrial geometry are invesigated. An original methodology based on a response surface for LES data is introduced. This surrogate model for the full LES problem is built using the Kriging technique, which enables a low-cost optimal linear interpolation of a restricted set of large-eddy simulation (LES) solutions. Therefore, it can be used in most realistic industrial applications. Using this surrogate model, it is shown that (i) optimal sets of simulation parameters (subgrid model constant and artificial viscosity parameter in the present case) can be found; (ii) optimal values, as expected, depend on the cost functional to be minimized. Here, a realistic approach, which takes into account experimental data sparseness, is introduced. It is observed that minimization of the error evaluated using a too small subset of reference data may yield a global deterioration of the results.

1.
Sagaut
,
P.
, 2005,
Large-Eddy Simulation for Incompressible Flows
, 3rd ed.,
Springer
,
New York
.
2.
Geurts
,
B. J.
, 2003,
Elements of Direct and Large-Eddy Simulation
,
Edwards
,
Ann Arbor
.
3.
Ghosal
,
S.
, 1996, “
An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence
,”
J. Comput. Phys.
0021-9991,
125
, pp.
187
206
.
4.
Garnier
,
E.
,
Mossi
,
M.
,
Sagaut
,
P.
,
Deville
,
M.
, and
Comte
,
P.
, 1999, “
On the Use of Shock-Capturing Schemes for Large-Eddy Simulation
,”
J. Comput. Phys.
0021-9991,
153
, pp.
273
311
.
5.
Geurts
,
B. J.
, and
Froehlich
,
J.
, 2002, “
A Framework for Predicting Accuracy Limitations in Large-Eddy Simulation
,”
Phys. Fluids
1070-6631,
14
(
6
), pp.
L41
L44
.
6.
Park
,
N.
, and
Mahesh
,
K.
, 2007, “
Analysis of Numerical Errors in Large-Eddy Simulation Using Statistical Closure Theory
,”
J. Comput. Phys.
0021-9991,
222
, pp.
194
216
.
7.
Meyers
,
J.
,
Geurts
,
B. J.
, and
Baelmans
,
M.
, 2003, “
Database Analysis of Errors in Large-Eddy Simulation
,”
Phys. Fluids
1070-6631,
15
(
9
), pp.
2740
2755
.
8.
Meyers
,
J.
, and
Sagaut
,
P.
, 2006, “
On the Model Coefficients for the Standard and the Variational Multi-Scale Smagorinsky Model
,”
J. Fluid Mech.
0022-1120,
569
, pp.
287
319
.
9.
Hoffman
,
J.
, and
Johnson
,
C.
, 2004, “
Computatbility and Adaptivity in CFD
,”
Encyclopedia of Computational Mechanics
,
E.
Stein
,
R.
de Borst
, and
T. J. R.
Hughes
eds.,
Wiley
,
New York
, Vol.
3
, pp.
183
206
.
10.
Celik
,
I. B.
,
Cehreli
,
Z. N.
, and
Yavuz
,
I.
, 2005, “
Index of Resolution Quality for Large-Eddy Simulations
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
949
958
.
11.
Freitag
,
M.
, and
Klein
,
M.
, 2006, “
An Improved Method to Assess the Quality of Large-Eddy Simulations in the Context of Implicit Filtering
,”
J. Turbul.
1468-5248,
7
(
40
), pp.
1
11
.
12.
Meyers
,
J.
,
Sagaut
,
P.
, and
Geurts
,
B. J.
, 2006, “
Optimal Model Parameters for Multi-Obective Large-Eddy Simulations
,”
Phys. Fluids
1070-6631,
18
, p.
095103
.
13.
Lucor
,
D.
,
Meyers
,
J.
, and
Sagaut
,
P.
, “
Sensitivity Analysis of LES Using Polynomial Chaos
,”
J. Fluid Mech.
0022-1120, in press.
14.
Krige
,
D. G.
, 1951, “
A Statistical Approach to Some Basic Mine Valuations Problems on the Witwatersrand
,”
J. of Chem., Metal. and Mining Soc. of the South Africa
,
52
, pp.
119
139
.
15.
Jouhaud
,
J. C.
,
Sagaut
,
P.
, and
Labeyrie
,
B.
, 2006, “
A Kriging Approach for CFD/Wind Tunnel Data Comparison
,”
ASME J. Fluids Eng.
0098-2202,
128
(
4
), pp.
847
855
.
16.
Jouhaud
,
J. C.
,
Sagaut
,
P.
,
Montagnac
,
M.
, and
Laurenceau
,
J.
, 2007, “
A Surrogate-Model Based Multi-Disciplinary Shape Optimization Method With Application to a 2D Subsonic Airfoil
,”
Comput. Fluids
0045-7930,
36
(
3
), pp.
520
529
.
17.
Smagorinsky
,
J.
, 1963, “
General Recirculation Experiments With the Primitive Equations. I. The Basic Experiment
,”
Mon. Weather Rev.
0027-0644,
91
(
3
), pp.
99
164
.
18.
Margason
,
R. J.
, 1993, “
Fifty Years of Jet in Crossflow
,” AGARD Computational and Experiments Assessment of Jets in Cross Flow, AGARD CP-534, pp.
1.1
1.12
.
19.
Poinsot
,
T.
, and
Lele
,
S. K.
, 1992, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
0021-9991,
101
, pp.
104
129
.
20.
Polifke
,
W.
, and
Wall
,
C.
, 2002, “
Non-Reflecting Boundary Conditions for Acoustic Transfer Matrix Estimation With LES
,”
Proceedings of the Summer Program 2002
, Center for Turbulence Research, pp.
345
356
.
21.
Garnier
,
E.
,
Sagaut
,
P.
, and
Deville
,
M.
, 2001, “
A Class of Explicit ENO Filters With Application to Unsteady Flows
,”
J. Comput. Phys.
0021-9991,
170
, pp.
184
204
.
22.
Ciardi
,
M.
,
Sagaut
,
P.
,
Klein
,
M.
, and
Dawes
,
W. N.
, 2005, “
A Dynamic Finite-Volume Scheme for Large-Eddy Simulation on Unstructured Grids
,”
J. Comput. Phys.
0021-9991,
210
, pp.
632
655
.
23.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
(
4
), pp.
409
435
.
24.
Anderson
,
E.
,
Bai
,
Z.
,
Bischof
,
C.
,
Blackford
,
S.
,
Demmel
,
J.
,
Dongarra
,
J.
,
Du Croz
,
J.
,
Greenbaum
,
A.
,
Hammarling
,
S.
,
McKenney
,
A.
, and
Sorensen
,
D.
, 1999,
LAPACK Users’Guide, Society for Industrial and Applied Mathematics
, 3rd ed.,
SIAM
, 1999.
You do not currently have access to this content.