Accuracy and reliability of large-eddy simulation data in a really complex industrial geometry are invesigated. An original methodology based on a response surface for LES data is introduced. This surrogate model for the full LES problem is built using the Kriging technique, which enables a low-cost optimal linear interpolation of a restricted set of large-eddy simulation (LES) solutions. Therefore, it can be used in most realistic industrial applications. Using this surrogate model, it is shown that (i) optimal sets of simulation parameters (subgrid model constant and artificial viscosity parameter in the present case) can be found; (ii) optimal values, as expected, depend on the cost functional to be minimized. Here, a realistic approach, which takes into account experimental data sparseness, is introduced. It is observed that minimization of the error evaluated using a too small subset of reference data may yield a global deterioration of the results.
Skip Nav Destination
e-mail: jjouhaud@cerfacs.fr
e-mail: pierre.sagaut@upmc.fr
Article navigation
February 2008
Research Papers
Sensitivity Analysis and Multiobjective Optimization for LES Numerical Parameters
J.-C. Jouhaud,
e-mail: jjouhaud@cerfacs.fr
J.-C. Jouhaud
Senior Researcher
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)
, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex, France
Search for other works by this author on:
P. Sagaut,
P. Sagaut
Professor
Institut Jean Le Rond d’Alembert,
e-mail: pierre.sagaut@upmc.fr
Université Pierre et Marie Curie
, 4 place Jussieu-case 162, F-75252 Paris Cedex 05, France
Search for other works by this author on:
B. Enaux,
B. Enaux
Ph.D student
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)
, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex, France
Search for other works by this author on:
J. Laurenceau
J. Laurenceau
Ph.D student
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)
, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex, France
Search for other works by this author on:
J.-C. Jouhaud
Senior Researcher
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)
, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex, Francee-mail: jjouhaud@cerfacs.fr
P. Sagaut
Professor
Institut Jean Le Rond d’Alembert,
Université Pierre et Marie Curie
, 4 place Jussieu-case 162, F-75252 Paris Cedex 05, Francee-mail: pierre.sagaut@upmc.fr
B. Enaux
Ph.D student
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)
, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex, France
J. Laurenceau
Ph.D student
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)
, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex, FranceJ. Fluids Eng. Feb 2008, 130(2): 021401 (9 pages)
Published Online: January 25, 2008
Article history
Received:
June 11, 2007
Revised:
August 30, 2007
Published:
January 25, 2008
Citation
Jouhaud, J., Sagaut, P., Enaux, B., and Laurenceau, J. (January 25, 2008). "Sensitivity Analysis and Multiobjective Optimization for LES Numerical Parameters." ASME. J. Fluids Eng. February 2008; 130(2): 021401. https://doi.org/10.1115/1.2829602
Download citation file:
Get Email Alerts
Related Articles
Assessment of Very High Order of Accuracy in Implicit LES models
J. Fluids Eng (December,2007)
Implicit Large Eddy Simulation of Two-Dimensional Homogeneous Turbulence Using Weighted Compact Nonlinear Scheme
J. Fluids Eng (June,2009)
Second-Moment Closure Model for IC Engine Flow Simulation Using Kiva Code
J. Eng. Gas Turbines Power (April,2000)
Coarse Resolution Turbulence Simulations With Spectral Vanishing Viscosity—Large-Eddy Simulations (SVV-LES)
J. Fluids Eng (December,2002)
Related Proceedings Papers
Related Chapters
The Finite-Differencing Enhanced LCMM
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Optimization of Half-Pixel Interpolation for H.264/AVC Based on C64x+ DSP
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
Incremental Model Adjustment
Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation, and Enabling Design of Experiments