Hydrodynamics and sound radiation of a low speed planar jet with Re=3000 have been studied by large eddy simulation combined with Lighthill’s acoustic analogy. Jets evolving from both well-developed (parabolic) and undeveloped (top-hat) mean velocity profiles have been simulated. The results showed the following: (i) initial domination of a symmetrical mode for jets evolving from top-hat profiles and prevailing of an antisymmetrical mode resulting in a sinuous distortion of the potential core for jets evolving from parabolic profiles, and (ii) shape of a mean velocity profile has some effect on mean flow characteristics; however, the major differences were observed in the development of the fluctuations. Velocity fluctuations were significantly higher for jets evolving from a parabolic profile in the region beyond the end of the potential core before the flow reached a self-preserving state. To calculate the basic sound radiation, the sources in Lighthill’s equation were treated either as compact in all directions or as noncompact in the spanwise direction. The spanwise length of the computational domain was found to have a little effect on the results obtained with compact in all directions solution provided that spanwise length exceeds the correlation length. Results showed that the majority of sound was generated by the region beyond the end of the potential core.

1.
Sato
,
H.
, 1960, “
The Stability and Transition of a Two-dimensional Jet
,”
J. Fluid Mech.
0022-1120,
7
, pp.
53
80
.
2.
Rockwell
,
D. O.
, and
Niccolls
,
W. O.
, 1972, “
Natural Breakdown of Planar Jets
,”
ASME J. Basic Eng.
0021-9223,
94
, pp.
720
730
.
3.
Mattingly
,
G. E.
, and
Criminale
,
W. O.
, 1971, “
Disturbance Characteristics in a Plane Jet
,”
Phys. Fluids
0031-9171,
14
, pp.
2258
2264
.
4.
Browne
,
L. W. B.
,
Antonia
,
R. A.
, and
Chambers
,
A. J.
, 1984, “
The Interaction Region of a Turbulent Plane Jet
,”
J. Fluid Mech.
0022-1120,
149
, pp.
355
373
.
5.
Thomas
,
F. O.
, and
Goldschmidt
,
V. W.
, 1986, “
Structural Characteristics of a Developing Turbulent Planar Jet
,”
J. Fluid Mech.
0022-1120,
163
, pp.
227
256
.
6.
Thomas
,
F. O.
, and
Chu
,
H. C.
, 1989, “
An Experimental Investigation of the Transition of a Planar Jet: Subharmonic Suppression and Upstream Feedback
,”
Phys. Fluids A
0899-8213,
1
, pp.
1566
1587
.
7.
Thomas
,
F. O.
, and
Prakash
,
K. M. K.
, 1991, “
An Experimental Investigation of the Natural Transition of an Untuned Planar Jet
,”
Phys. Fluids A
0899-8213,
3
, pp.
90
105
.
8.
Bradbury
,
L. J. S.
, 1965, “
The Structure of a Self-Preserving Turbulent Plane Jet
,”
J. Fluid Mech.
0022-1120,
23
, pp.
31
64
.
9.
Heskestad
,
G.
, 1965, “
Hot-Wire Measurements in a Plane Turbulent Jet
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
721
734
.
10.
Gutmark
,
E.
, and
Wygnanski
,
I.
, 1976, “
The Planar Turbulent Jet
,”
J. Fluid Mech.
0022-1120,
73
, pp.
465
495
.
11.
Hussain
,
A. K. M. F.
, and
Clark
,
A. R.
, 1977, “
Upstream Influence on the Near Field of a Plane Jet
,”
Phys. Fluids
0031-9171,
20
, pp.
1416
1426
.
12.
Everitt
,
K. W.
, and
Robins
,
A. G.
, 1978, “
The Development and Structure of Turbulent Plane Jets
,”
J. Fluid Mech.
0022-1120,
88
, pp.
563
583
.
13.
Goldschmidt
,
V. W.
, and
Bradshaw
,
P.
, 1973, “
Flapping of a Plane Jet
,”
Phys. Fluids
0031-9171,
16
, pp.
354
355
.
14.
Cervantes de Gortari
,
J.
, and
Goldschmidt
,
V. W.
, 1981, “
The Apparent Flapping Motion of a Turbulent Plane Jet—Further Experimental Results
,”
ASME J. Fluids Eng.
0098-2202,
103
, pp.
119
126
.
15.
Goldschmidt
,
V. W.
,
Moallemi
,
M. K.
, and
Oler
,
J. W.
, 1983, “
Structures and Flow Reversal in Turbulent Plane Jets
,”
Phys. Fluids
0031-9171,
26
, pp.
428
432
.
16.
Oler
,
J. W.
, and
Goldschmidt
,
V. W.
, 1982, “
A Vortex-street Model of the Flow in the Similarity Region of a Two-dimensional Free Turbulent Jet
,”
J. Fluid Mech.
0022-1120,
123
, pp.
523
535
.
17.
Mumford
,
J. C.
, 1982, “
The Structure of the Large Eddies in Fully Developed Turbulent Shear Flows. Part 1. The Plane Jet
,”
J. Fluid Mech.
0022-1120,
118
, pp.
241
268
.
18.
Thomas
,
F. O.
, and
Brehob
,
E. G.
, 1986, “
An Investigation of Large-scale Structure in the Similarity Region of a Two-dimensional Turbulent Jet
,”
Phys. Fluids
0031-9171,
29
, pp.
1788
1795
.
19.
Antonia
,
R. A.
,
Chambers
,
A. J.
,
Britz
,
D.
, and
Browne
,
L. W. B.
, 1986, “
Organized Structures in a Turbulent Plane Jet: Topology and Contribution to Momentum and Heat Transport
,”
J. Fluid Mech.
0022-1120,
172
, pp.
211
229
.
20.
Dai
,
Y.
,
Kobayashi
,
T.
, and
Taniguchi
,
N.
, 1994, “
Large Eddy Simulation of Plane Turbulent Jet Flow Using a New Outflow Velocity Boundary Condition
,”
JSME Int. J., Ser. B
1340-8054,
37
, pp.
242
253
.
21.
Weinberger
,
C.
,
Rewerts
,
J.
, and
Janicka
,
J.
, 1997, “
The Influence of Inlet Conditions on a Large Eddy Simulation of a Turbulent Plane Jet
,”
Proceedings of the 11th Symposium on Turbulent Shear Flows
,
Springer-Verlag
,
Grenoble, France
, Vol.
3
, pp.
25.17
25.22
.
22.
Ribault
,
C. L.
,
Sarkar
,
S.
, and
Stanley
,
S. A.
, 1999, “
Large Eddy Simulation of a Plane Jet
,”
Phys. Fluids
1070-6631,
11
, pp.
3069
3083
.
23.
Ribault
,
C. L.
,
Sarkar
,
S.
, and
Stanley
,
S. A.
, 2001, “
Large Eddy Simulation of Evolution of a Passive Scalar in Plane Jet
,”
AIAA J.
0001-1452,
39
, pp.
1509
1516
.
24.
Stanley
,
S. A.
,
Sarkar
,
S.
, and
Mellado
,
J. P.
, 2002, “
A Study of the Flow-Field Evolution and Mixing in a Planar Turbulent Jet Using Direct Numerical Simulation
,”
J. Fluid Mech.
0022-1120,
450
, pp.
377
407
.
25.
Avital
,
E. J.
, 2005, “
A Second Look at the Role of the Fast Fourier Transform as an Elliptic Solver
,”
Int. J. Numer. Methods Fluids
0271-2091,
48
(
9
), pp.
909
927
.
26.
Kim
,
W. W.
, and
Menon
,
S.
, 1999, “
An Unsteady Incompressible Navier–Stokes Solver for Large Eddy Simulation of Turbulent Flow
,”
Int. J. Numer. Methods Fluids
0271-2091,
31
, pp.
983
1017
.
27.
Inagaki
,
M.
,
Kondoh
,
T.
, and
Nagano
,
Y.
, 2002, “
A Mixed-Time-Scale SGS Model for Practical LES
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
68
(
673
), pp.
2572
2579
.
28.
Mittal
,
R.
, and
Balachandar
,
S.
, 1996, “
Direct Numerical Simulation of Flow Past Elliiptic Cylinders
,”
J. Comput. Phys.
0021-9991,
124
, pp.
351
367
.
29.
Crighton
,
D. G.
, 1975, “
Basic Principles of Aerodynamic Noise Generation
,”
Prog. Aerosp. Sci.
0376-0421,
16
(
1
), pp.
31
96
.
30.
Avital
,
E. J.
,
Sandham
,
N. D.
,
Luo
,
K. H.
, and
Musafir
,
R. E.
, 1999, “
Calculation of Basic Sound Radiation of Axisymmetric Jets by Direct Numerical Simulation
,”
AIAA J.
0001-1452,
37
(
2
), pp.
161
168
.
31.
Hu
,
H.
,
Morfey
,
C. L.
, and
Sandham
,
N. D.
, 2003, “
Sound Radiation in Turbulent Channel Flows
,”
J. Fluid Mech.
0022-1120,
475
, pp.
269
302
.
32.
Kouts
,
C. A.
, and
Yu
,
J. C.
, 1975, “
Far Noise Field of a Two-Dimensional Subsonic Jet
,”
AIAA J.
0001-1452,
13
, pp.
1031
1035
.
33.
Munro
,
S. E.
, and
Ahuja
,
K. K.
, 2003, “
Aeroacoustics of a High Aspect-Ratio Jet
,”
Ninth AIAA∕CEAS Aeroacoustics Conference and Exhibit
,
Hilton Head
,
South Carolina
, May 12–14, AIAA Paper No. 2003–3323, pp.
1
17
.
34.
Mitchell
,
B. E.
,
Lele
,
S. K.
, and
Moin
,
P.
, 1995, “
Direct Computation of the Sound from a Compressible Co-rotating Vortex Pair
,”
J. Fluid Mech.
0022-1120,
285
, pp.
181
202
.
You do not currently have access to this content.