Abstract
Open cavities at transonic speeds can result in acoustic resonant flow behavior with fluctuating pressure levels of sufficient intensity to cause significant damage to internal stores and surrounding structures. Extensive research in this field has produced numerous cavity flow control techniques, the more effective of which may require costly feedback control systems or entail other drawbacks such as drag penalties or rapid performance degradation at off-design condition. The current study focuses on the use of simple geometric modifications of a rectangular planform cavity with the aim of attenuating the aeroacoustic signature. Experiments were performed in an intermittent suck-down transonic wind tunnel by using a typical open flow rectangular planform cavity, which was modularly designed such that the leading and trailing edge geometries could be modified by using a family of inserts. The current work focused on a variety of recessed leading edge step arrangements. Configurations were tested at transonic Mach numbers spanning the range Mach 0.7–0.9, and unsteady pressure measurements were recorded at various stations within the cavity in order to obtain acoustic spectra. The most effective configuration at Mach 0.9 was the leading edge step employing a step height to step length ratio of 0.4. This configuration achieved a tonal attenuation of up to and an overall sound pressure level (OASPL) reduction of approximately . This is a significant level of noise suppression in comparison with other passive control methods. In addition, it offers the additional benefits of being a simple geometric feature, which does not rely on placing flow effectors into the high-speed grazing flow.