In this work, we present two simple mean flow solutions that mimic the bulk gas motion inside a full-length, cylindrical hybrid rocket engine. Two distinct methods are used. The first is based on steady, axisymmetric, rotational, and incompressible flow conditions. It leads to an Eulerian solution that observes the normal sidewall mass injection condition while assuming a sinusoidal injection profile at the head end wall. The second approach constitutes a slight improvement over the first in its inclusion of viscous effects. At the outset, a first order viscous approximation is constructed using regular perturbations in the reciprocal of the wall injection Reynolds number. The asymptotic approximation is derived from a general similarity reduced Navier–Stokes equation for a viscous tube with regressing porous walls. It is then compared and shown to agree remarkably well with two existing solutions. The resulting formulations enable us to model the streamtubes observed in conventional hybrid engines in which the parallel motion of gaseous oxidizer is coupled with the cross-streamwise (i.e., sidewall) addition of solid fuel. Furthermore, estimates for pressure, velocity, and vorticity distributions in the simulated engine are provided in closed form. Our idealized hybrid engine is modeled as a porous circular-port chamber with head end injection. The mathematical treatment is based on a standard similarity approach that is tailored to permit sinusoidal injection at the head end.

1.
Chiaverini
,
M. J.
,
Serin
,
N.
,
Johnson
,
D. K.
,
Lu
,
Y. -C.
,
Kuo
,
K. K.
, and
Risha
,
G. A.
, 2000, “
Regression Rate Behavior of Hybrid Rocket Solid Fuels
,”
J. Propul. Power
0748-4658,
16
(
1
), pp.
125
132
.
2.
Chiaverini
,
M. J.
,
Kuo
,
K. K.
,
Peretz
,
A.
, and
Harting
,
G. C.
, 2001, “
Regression-Rate and Heat-Transfer Correlations for Hybrid Rocket Combustion
,”
J. Propul. Power
0748-4658,
17
(
1
), pp.
99
110
.
3.
Jenkins
,
R. M.
, and
Cook
,
J. R.
, 1995, “
A Preliminary Analysis of Low Frequency Pressure Oscillations in Hybrid Rocket Motors
,”
31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, San Diego, CA, Paper No. 95-2690.
4.
Krier
,
H.
, and
Kerzner
,
H.
, 1972, “
An Analysis of the Chemically Reacting Boundary Layer During Hybrid Combustion
,”
AIAA/SAE Eighth Joint Propulsion Specialist Conference
, New Orleans, LA, Paper No. 72-1144.
5.
Knuth
,
W. H.
,
Chiaverini
,
M. J.
,
Sauer
,
J. A.
, and
Gramer
,
D. J.
, 2002, “
Solid-Fuel Regression Rate Behavior of Vortex Hybrid Rocket Engines
,”
J. Propul. Power
0748-4658,
18
(
3
), pp.
600
609
.
6.
Karabeyoglu
,
M. A.
,
Altman
,
D.
, and
Cantwell
,
B. J.
, 2002, “
Combustion of Liquefying Hybrid Propellant: Part 1, General Theory
,”
J. Propul. Power
0748-4658,
18
(
3
), pp.
610
620
.
7.
Karabeyoglu
,
M. A.
, and
Cantwell
,
B. J.
, 2002, “
Combustion of Liquefying Hybrid Propellant: Part 2, Stability and Liquid Films
,”
J. Propul. Power
0748-4658,
18
(
3
), pp.
621
630
.
8.
Kuo
,
K.
, and
Chiaverini
,
M. J.
, 2007,
Challenges of Hybrid Rocket Propulsion in the 21st Century, Fundamentals of Hybrid Rocket Combustion and Propulsion
,
K.
Kuo
and
M. J.
Chiaverini
, eds.,
AIAA Progress in Astronautics and Aeronautics
,
Washington, DC
, pp.
591
636
.
9.
Culick
,
F. E. C.
, 1966, “
Rotational Axisymmetric Mean Flow and Damping of Acoustic Waves in a Solid Propellant Rocket
,”
AIAA J.
0001-1452,
4
(
8
), pp.
1462
1464
.
10.
Taylor
,
G. I.
, 1956, “
Fluid Flow in Regions Bounded by Porous Surfaces
,”
Proc. R. Soc. London, Ser. A
0950-1207,
234
(
1199
), pp.
456
475
.
11.
Dauenhauer
,
E. C.
, and
Majdalani
,
J.
, 2003, “
Exact Self-Similarity Solution of the Navier-Stokes Equations for a Porous Channel with Orthogonally Moving Walls
,”
Phys. Fluids
1070-6631,
15
(
6
), pp.
1485
1495
.
12.
Baum
,
J. D.
,
Levine
,
J. N.
, and
Lovine
,
R. L.
, 1988, “
Pulsed Instabilities in Rocket Motors: A Comparison Between Predictions and Experiments
,”
J. Propul. Power
0748-4658,
4
(
4
), pp.
308
316
.
13.
Sabnis
,
J. S.
,
Gibeling
,
H. J.
, and
McDonald
,
H.
, 1989, “
Navier-Stokes Analysis of Solid Propellant Rocket Motor Internal Flows
,”
J. Propul. Power
0748-4658,
5
(
6
), pp.
657
664
.
14.
Dunlap
,
R.
,
Willoughby
,
P. G.
, and
Hermsen
,
R. W.
, 1974, “
Flowfield in the Combustion Chamber of a Solid Propellant Rocket Motor
,”
AIAA J.
0001-1452,
12
(
10
), pp.
1440
1442
.
15.
Dunlap
,
R.
,
Blackner
,
A. M.
,
Waugh
,
R. C.
,
Brown
,
R. S.
, and
Willoughby
,
P. G.
, 1990, “
Internal Flow Field Studies in a Simulated Cylindrical Port Rocket Chamber
,”
J. Propul. Power
0748-4658,
6
(
6
), pp.
690
704
.
16.
Yamada
,
K.
,
Goto
,
M.
, and
Ishikawa
,
N.
, 1976, “
Simulative Study of the Erosive Burning of Solid Rocket Motors
,”
AIAA J.
0001-1452,
14
(
9
), pp.
1170
1176
.
17.
Brown
,
R. S.
,
Blackner
,
A. M.
,
Willoughby
,
P. G.
, and
Dunlap
,
R.
, 1986, “
Coupling between Acoustic Velocity Oscillations and Solid Propellant Combustion
,”
J. Propul. Power
0748-4658,
2
(
5
), pp.
428
437
.
18.
Proudman
,
I.
, 1960, “
An Example of Steady Laminar Flow at Large Reynolds Number
,”
J. Fluid Mech.
0022-1120,
9
(
04
), pp.
593
602
.
19.
Majdalani
,
J.
,
Vyas
,
A. B.
, and
Flandro
,
G. A.
, 2002, “
Higher Mean-Flow Approximation for a Solid Rocket Motor with Radially Regressing Walls
,”
AIAA J.
0001-1452,
40
(
9
), pp.
1780
1788
.
20.
Majdalani
,
J.
,
Vyas
,
A. B.
, and
Flandro
,
G. A.
, 2009, “
Erratum on Higher Mean-Flow Approximation for a Solid Rocket Motor with Radially Regressing Walls
,”
AIAA J.
0001-1452,
47
(
1
), pp.
286
286
.
21.
Majdalani
,
J.
,
Zhou
,
C.
, and
Dawson
,
C. A.
, 2002, “
Two-Dimensional Viscous Flow Between Slowly Expanding or Contracting Walls with Weak Permeability
,”
J. Biomech.
0021-9290,
35
(
10
), pp.
1399
1403
.
22.
Majdalani
,
J.
, and
Zhou
,
C.
, 2003, “
Moderate-to-Large Injection and Suction Driven Channel Flows with Expanding or Contracting Walls
,”
J. Appl. Math. Mech.
0021-8928,
83
(
3
), pp.
181
196
.
23.
Zhou
,
C.
, and
Majdalani
,
J.
, 2002, “
Improved Mean Flow Solution for Slab Rocket Motors with Regressing Walls
,”
J. Propul. Power
0748-4658,
18
(
3
), pp.
703
711
.
24.
Flandro
,
G. A.
, and
Majdalani
,
J.
, 2003, “
Aeroacoustic Instability in Rockets
,”
AIAA J.
0001-1452,
41
(
3
), pp.
485
497
.
25.
Majdalani
,
J.
,
Flandro
,
G. A.
, and
Roh
,
T. S.
, 2000, “
Convergence of Two Flowfield Models Predicting a Destabilizing Agent in Rocket Combustion
,”
J. Propul. Power
0748-4658,
16
(
3
), pp.
492
497
.
26.
Majdalani
,
J.
, 2001, “
Vorticity Dynamics in Isobarically Closed Porous Channels. Part I: Standard Perturbations
,”
J. Propul. Power
0748-4658,
17
(
2
), pp.
355
362
.
27.
Ugurtas
,
B.
,
Avalon
,
G.
,
Lupoglazoff
,
N.
,
Vuillot
,
F.
, and
Casalis
,
G.
, 2000,
Stability and Acoustic Resonance of Internal Flows Generated by Side Injection, Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics
, Vol.
185
,
V.
Yang
,
T. B.
Brill
, and
W. -Z.
Ren
, eds.,
AIAA Progress in Astronautics and Aeronautics
,
Washington, DC
, pp.
823
836
.
28.
Majdalani
,
J.
, and
Saad
,
T.
, 2007, “
The Taylor-Culick Profile with Arbitrary Headwall Injection
,”
Phys. Fluids
1070-6631,
19
(
9
), pp.
093601
.
29.
Muzzy
,
R.
, 1972, “
Applied Hybrid Combustion Theory
,”
AIAA/SAE Eighth Joint Propulsion Specialist Conference
, New Orleans, LA, Paper No. 72-1143.
30.
Muzzy
,
R.
, and
Wooldridge
,
C.
, 1967, “
Internal Ballistic Considerations in Hybrid Rocket Design
,”
J. Spacecr. Rockets
0022-4650,
4
(
2
), pp.
255
262
.
31.
Marxman
,
G.
,
Wooldridge
,
C.
, and
Muzzy
,
R.
, 1964, “
Fundamentals of Hybrid Boundary Layer Combustion
,”
Prog. Astronaut. Aeronaut.
0079-6050,
15
, pp.
485
522
.
32.
Kurdyumov
,
V. N.
, 2006, “
Steady Flows in the Slender, Noncircular, Combustion Chambers of Solid Propellants Rockets
,”
AIAA J.
0001-1452,
44
(
12
), pp.
2979
2986
.
33.
Yuan
,
S. W.
, and
Finkelstein
,
A. B.
, 1956, “
Laminar Pipe Flow with Injection and Suction through a Porous Wall
,”
ASME Trans. J. Appl. Mech.
0021-8936,
78
(
3
), pp.
719
724
.
34.
Terrill
,
R. M.
, and
Thomas
,
P. W.
, 1969, “
On Laminar Flow Through a Uniformly Porous Pipe
,”
Appl. Sci. Res.
0003-6994,
21
(
1
), pp.
37
67
.
You do not currently have access to this content.