This study proposes a three-dimensional vortex method for the simulation of bubbly flow. The method discretizes the vorticity field by vortex elements. The behavior of the vortex element and the bubble motion are simultaneously analyzed with the Lagrangian approach to compute the time evolution of the flow. This study also applies the vortex method to the simulation of a bubble plume to demonstrate the validity of the method. In a tank containing water, small hydrogen bubbles are released from the bottom of the tank. The bubbles rise due to the buoyant force and induce the water flow around them. The simulation for the plume at the starting period highlights that the rising bubbles induce large-scale eddies at their top and that the bubbles are entrained into the eddies. The simulation for the developed plume demonstrates that large-scale eddies appear around the rising bubbles and that they cause the meandering behavior of the plume. Such three-dimensional features of the bubble plume are favorably compared with the experimental results, indicating the validity of the proposed vortex method.

1.
Wee
,
D.
, and
Ghoniem
,
A. F.
, 2006, “
Modified Interpolation Kernels for Treating Diffusion and Remeshing in Vortex Methods
,”
J. Comput. Phys.
0021-9991,
213
, pp.
239
263
.
2.
Ploumhans
,
P.
,
Winckelmans
,
G. S.
,
Salmon
,
J. K.
,
Leonard
,
A.
, and
Warren
,
M. S.
, 2002, “
Vortex Methods for Direct Numerical Simulation of Three-Dimensional Bluff Body Flows: Application to the Sphere at Re=300, 500, and 1000
,”
J. Comput. Phys.
0021-9991,
178
, pp.
427
463
.
3.
Chatelain
,
P.
,
Curioni
,
A.
,
Bergdorf
,
M.
,
Rossinelli
,
D.
,
Andreoni
,
W.
, and
Koumoutsakos
,
P.
, 2008, “
Billion Vortex Particle Direct Numerical Simulations of Aircraft Wakes
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
197
, pp.
1296
1304
.
4.
Uchiyama
,
T.
, and
Fukase
,
A.
, 2005, “
Three-Dimensional Vortex Method for Gas-Particle Two-Phase Compound Round Jet
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
32
40
.
5.
Uchiyama
,
T.
, and
Naruse
,
M.
, 2006, “
Three-Dimensional Vortex Simulation for Particulate Jet Generated by Free Falling Particles
,”
Chem. Eng. Sci.
0009-2509,
61
, pp.
1913
1921
.
6.
Uchiyama
,
T.
, and
Yagami
,
H.
, 2008, “
Numerical Simulation for the Collision Between a Vortex Ring and Solid Particles
,”
Powder Technol.
0032-5910,
188
, pp.
73
80
.
7.
Uchiyama
,
T.
, and
Degawa
,
T.
, 2006, “
Numerical Simulation for Gas-Liquid Two-Phase Free Turbulent Flow based on Vortex in Cell Method
,”
JSME Int. J., Ser. B
1340-8054,
49
, pp.
1008
1015
.
8.
Uchiyama
,
T.
, and
Degawa
,
T.
, 2008, “
Numerical Simulation of Plane Bubble Plume by Vortex Method
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
222
, pp.
1193
1201
.
9.
Alam
,
M.
, and
Arakeri
,
V. H.
, 1993, “
Observations on Transition in Plane Bubble Plumes
,”
J. Fluid Mech.
0022-1120,
254
, pp.
363
374
.
10.
Auton
,
T. R.
,
Hunt
,
J. C. R.
, and
Prud’homme
,
M.
, 1988, “
The Force Exerted on a Body in Inviscid Unsteady Nonuniform Rotational Flow
,”
J. Fluid Mech.
0022-1120,
197
, pp.
241
257
.
11.
Schiller
,
L.
, and
Naumann
,
A. Z.
, 1933, “
Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung
,”
Z. Ver. Dtsch. Ing.
0341-7255,
77
, pp.
318
321
.
12.
Hirasaki
,
G. J.
, and
Hellums
,
J. D.
, 1970, “
Boundary Conditions on the Vector and Scalar Potentials in Viscous Three-Dimensional Hydrodynamics
,”
Q. Appl. Math.
0033-569X,
28
, pp.
293
296
.
13.
Winckelmans
,
G. S.
, and
Leonard
,
A.
, 1993, “
Contribution to Vortex Particle Methods for the Computation of Three-Dimensional Incompressible Unsteady Flows
,”
J. Comput. Phys.
0021-9991,
109
, pp.
247
273
.
14.
Degond
,
P.
, and
Mas-Gallic
,
S.
, 1989, “
The Weighted Particle Method for Convection-Diffusion Equations
,”
Math. Comput.
0025-5718,
53
, pp.
485
507
.
15.
Monaghan
,
J. J.
, 1985, “
Extrapolating B Splines for Interpolation
,”
J. Comput. Phys.
0021-9991,
60
, pp.
253
262
.
16.
Cottet
,
G. -H.
, and
Koumoutsakos
,
P.
, 2000,
Vortex Methods: Theory and Applications
,
Cambridge University Press
,
Cambridge
.
17.
Murai
,
Y.
,
Matsumoto
,
Y.
,
Song
,
X. -Q.
, and
Yamamoto
,
F.
, 1998, “
Numerical Analysis of Turbulence Structures Induced by Bubble Buoyancy
,”
JSME Int. J., Ser. B
1340-8054,
64
, pp.
3257
3263
.
18.
Sene
,
K. J.
,
Hunt
,
J. C. R.
, and
Thomas
,
N. H.
, 1994, “
The Role of Coherent Structures in Bubble Transport by Turbulent Shear Flows
,”
J. Fluid Mech.
0022-1120,
259
, pp.
219
240
.
19.
Yang
,
X.
,
Thomas
,
N. H.
,
Guo
,
L. J.
, and
Hou
,
Y.
, 2002, “
Two-Way Coupled Bubble Laden Mixing Layer
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
555
564
.
20.
Caballina
,
O.
,
Climent
,
E.
, and
Dušek
,
J.
, 2003, “
Two-Way Coupling Simulations of Instabilities in a Plane Bubble Plume
,”
Phys. Fluids
1070-6631,
15
, pp.
1535
1544
.
21.
Murai
,
Y.
, and
Matsumoto
,
Y.
, 1997, “
Numerical Analysis of Detailed Flow Structures in Bubble Plume, 2nd Report, Three-Dimensional Flow Structure and Turbulence Mechanism
,”
JSME Int. J., Ser. B
1340-8054,
63
, pp.
2283
2288
.
You do not currently have access to this content.