The development of a columnar vortex and its attenuation using radial rods at the bottom boundary of a stationary container are experimentally studied. The fluid motion is achieved combining two independent flows: a global circulation around the cylinder axis and a meridian flow generated by recirculating fluid through a central nozzle located at the vessel bottom. The resulting velocity field is analyzed under two conditions: with and without the meridian or suction flow. It is shown that in the second condition a columnar vortex merges and that its intensity increases when the suction flow rate is increased. The key role played by the bottom boundary layer in the vortex formation is demonstrated. In the last part of the work, the attenuation of the vortex intensity produced by a set of rods located at the vessel bottom is investigated. It is found that obstacles with heights of the order of the boundary layer thickness are enough to produce the total annihilation of the vortex column.

1.
Andersen
,
A.
,
Bohr
,
T.
,
Stenum
,
B.
,
Juul Rasmussen
,
J.
, and
Lautrup
,
J.
, 2003, “
Anatomy of a Bathtub Vortex
,”
Phys. Rev. Lett.
0031-9007,
91
, pp.
104502
.
2.
Mory
,
M.
, and
Yurchenko
,
N.
, 1993, “
Vortex Generation by Suction in a Rotating Tank
,”
Eur. J. Mech. B/Fluids
0997-7546,
12
, pp.
729
747
.
3.
Turner
,
J. S.
, 1966, “
The Constraints Imposed on Tornado-Like Vortices by the Top and Bottom Boundary Conditions
,”
J. Fluid Mech.
0022-1120,
25
, pp.
377
400
.
4.
Alekseenko
,
S. V.
,
Kuibin
,
P. A.
,
Okulov
,
V. L.
, and
Shtork
,
S. I.
, 1999, “
Helical Vortices in Swirl Flow
,”
J. Fluid Mech.
0022-1120,
382
, pp.
195
243
.
5.
Hammerschmid
,
P.
,
Tacke
,
K. H.
,
Popper
,
H.
,
Weber
,
L.
,
Dubke
,
M.
, and
Schwerdtfeger
,
K.
, 1984,
Ironmaking Steelmaking
0301-9233,
11
(
6
), pp.
332
339
.
6.
Sankaranarayanan
,
R.
, and
Guthrie
,
R. I. L.
, 1992, “
A Laboratory Study of Slag Entrainment During the Emptying of Metallurgical Vessels
,”
Steelmaking Conference Proceedings
.
7.
Piva
,
M.
,
Iglesias
,
M.
,
Bissio
,
P.
, and
Calvo
,
A.
, 2003, “
Experiments on Vortex Funnel Formation During Drainage
,”
Physica A
0378-4371,
329
, pp.
1
6
.
8.
Mazzaferro
,
G. M.
,
Piva
,
M.
,
Ferro
,
S. P.
,
Bissio
,
P.
,
Iglesias
,
M.
,
Calvo
,
A.
, and
Goldschmit
,
M.
, 2004, “
Experimental and Numerical Analysis of Ladle Teeming Process
,”
Ironmaking Steelmaking
0301-9233,
31
(
6
), pp.
503
508
.
9.
Lewellen
,
W. S.
, 1962, “
A Solution for Three-Dimensional Vortex Flow With Strong Circulation
,”
J. Fluid Mech.
0022-1120,
14
, pp.
420
432
.
10.
Lundgren
,
T. S.
, 1985, “
The Vortical Flow Above the Drain-Hole in a Rotating Vessel
,”
J. Fluid Mech.
0022-1120,
155
, pp.
381
412
.
11.
Guthrie
,
R. I. L.
, and
Sankaranarayanan
,
R.
, 1990, “
Slag Entrainment Through a Funnel Vortex During Ladle Teeming Operations
,”
Proceedings of the International Symposium on Developments in Ladle Steelmaking and Continuous Casting
, CIM-METSoc, Hamilton, ON.
12.
Einstein
,
H.
, and
Li
,
H.
, 1951, “
Steady Vortex Flow in a Real Fluid
,”
Proc. Heat Transfer Fluid Mech. Inst.
0097-059X,
4
, pp.
33
43
.
13.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhans
,
J.
, 1998,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
Berlin
.
14.
URAPIV, an Open Source MATLAB Toolbox for Particle Image Velocimetry Analysis, http://urapiv.wordpress.com/http://urapiv.wordpress.com/
15.
Davidson
,
P. A.
, and
Potherat
,
A.
, 2002, “
A Note on Bödewadt–Hartmann Layers
,”
Eur. J. Mech. B/Fluids
0997-7546,
21
, pp.
545
559
.
You do not currently have access to this content.