Time-dependent computational simulations on cavity filling process by cold gas dynamic spray and powder jet deposition process ranging from microscale to macroscale were carried out in order to give an insight for their advanced applications to joining, crack repair, and dental treatment. Shock wave appears in front of the substrate due to underexpansion of jet and in-flight particles interact with the shock wave before their impact. The relation between shock wave, cavity configuration, and particle in-flight behavior in supersonic jet has been discussed in detail. Based on numerical and experimental studies, it was found that when the shock wave covers up the cylindrical cavity, the cavity cannot be filled at all by deposited powders. Moreover, under the condition of shock wave appearing inside the cylindrical cavity, conical deposition was formed due to the secondary back flow jet along the cavity side wall. By adopting conical cavity, cavity can be filled completely resulting from the suppression of the secondary back flow jet along the cavity side wall.

1.
Alkhimov
,
A. P.
,
Papyrin
,
A. N.
,
Kosarev
,
V. F.
, and
Nesterovich
,
N. I.
, 1994, “
Gas-Dynamic Spraying Method for Applying Coatings
,” U.S. Patent No. 5,302,414.
2.
Alkhimov
,
A. P.
,
Papyrin
,
A. N.
,
Kosarev
,
V. F.
, and
Nesterovich
,
N. I.
, 1995, “
Method and Device for Coating
,” European Patent EP 0,484,533 B1.
3.
Tokarev
,
A. O.
, 1996, “
Structure of Aluminum Powder Coatings Prepared by Cold Gasdynamic Spraying
,”
Metal Science and Heat Treatment
,
38
, pp.
136
139
.
4.
Papyrin
,
A.
,
Kosarev
,
V.
,
Klinkov
,
S.
,
Alkhimov
,
A.
, and
Fomin
,
V.
, 2007,
Cold Spay Technology
,
Elsevier
,
Amsterdam, The Netherlands
.
5.
Champagne
,
V.
, 2007,
The Cold Spray Materials Deposition Process
,
Woodhead Publishing Limited
,
Cambridge, England
.
6.
Assadi
,
H.
,
Gartner
,
F.
,
Stoltenhoff
,
T.
, and
Hreye
,
H.
, 2003, “
Bonding Mechanism in Cold Gas Spraying
,”
Acta Mater.
1359-6454,
51
, pp.
4379
4394
.
7.
Yoshihara
,
N.
,
Kuriyagawa
,
T.
,
Yasutomi
,
Y.
, and
Ogawa
,
K.
, 2005, “
Powder Jet Deposition of Ceramic Films
,”
Proceedings of the International Conference on Leading Edge Manufacturing in 21st Century
, pp.
833
838
.
8.
Noji
,
M.
,
Sasaki
,
K.
,
Kuriyagawa
,
T.
,
Suzuki
,
O.
,
Ogawa
,
K.
, and
Kanehira
,
M.
, 2005, “
Creating New Interface Between Tooth and Biomaterials Using Powder-Jet Technology
,”
International Congress Series
,
1284
, pp.
302
304
.
9.
Sato
,
T.
,
Solonenko
,
O. P.
, and
Nishiyama
,
H.
, 2002, “
Optimization for Plasma Spraying Processes by Numerical Simulation
,”
Thin Solid Films
0040-6090,
407
, pp.
54
59
.
10.
Sato
,
T.
,
Solonenko
,
O. P.
, and
Nishiyama
,
H.
, 2004, “
Evaluations of Ceramic Spraying Processes by Numerical Simulation
,”
Mater. Trans., JIM
0916-1821,
45
, pp.
1874
1879
.
11.
Takana
,
H.
,
Ogawa
,
K.
,
Shoji
,
T.
,
Nishiyama
,
H.
, 2008, “
Computational Simulation of Cold Spray Process Assisted by Electrostatic Force
,”
Powder Technol.
0032-5910,
185
, pp.
116
123
.
12.
Takana
,
H.
,
Ogawa
,
K.
,
Shoji
,
T.
, and
Nishiyama
,
H.
, 2008, “
Computational Simulation on Performance Enhancement of Cold Gas Dynamic Spray Processes With Electrostatic Assist
,”
ASME J. Fluids Eng.
0098-2202,
130
(
081701
), pp.
1
7
.
13.
Erlebacher
,
G.
,
Hussainu
,
M.
,
Speziale
,
C.
, and
Zang
,
T.
, 1992, “
Toward the Large-Eddy Simulation of Compressible Turbulent Flows
,”
J. Fluid Mech.
0022-1120,
238
, pp.
155
185
.
14.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
, 2005,
Microflows and Nanoflows
,
Springer
,
New York
.
15.
Saffman
,
P. G.
, 1965, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
0022-1120,
22
, pp.
385
400
.
16.
Saffman
,
P. G.
, 1968, “
Corrigendum to ‘The Lift on a Small Sphere in a Slow Shear Flow’
,”
J. Fluid Mech.
0022-1120,
31
, p.
624
.
17.
Li
,
A.
, and
Ahmadi
,
G.
, 1993, “
Deposition of Aerosols on Surfaces in a Turbulent Channel Flow
,”
Int. J. Eng. Sci.
0020-7225,
31
(
3
), pp.
435
451
.
18.
Henderson
,
C. B.
, 1976, “
Drag Coefficient of Spheres in Continuum and Rarefied Flows
,”
AIAA J.
0001-1452,
14
, pp.
707
708
.
19.
Kurochkin
,
Y. V.
,
Demin
,
Y. N.
, and
Soldatenkov
,
S. I.
, 2002, “
Demonstration of the Method of Cold Gasdynamic Spraying of Coatings
,”
Chemical and Petroleum Engineering
,
38
, pp.
245
248
.
20.
Alkhimov
,
A. P.
,
Klinkov
,
S. V.
, and
Kosarev
,
V. F.
, 2000, “
Experimental Study of Deformation and Attachment of Microparticles to an Obstacle Upon High-Rate Impact
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
41
, pp.
245
250
.
21.
Solonenko
,
O. P.
,
Kudinov
,
V. V.
,
Smirnov
,
A. V.
,
Cherepanov
,
A. N.
,
Popov
,
V. N.
,
Mikhalchenko
,
A. A.
, and
Kartaev
,
E. V.
, 2005, “
Micro-Metallurgy of Splat: Theory, Computer Simulation and Experiment
,”
JSME Int. J., Ser. B
1340-8054,
48
, pp.
366
380
.
22.
Klinkov
,
S. V.
,
Kosarev
,
V. F.
, and
Rein
,
M.
, 2005, “
Cold Spray Deposition: Significance of Particle Impact Phenomena
,”
Aerosp. Sci. Technol.
1270-9638,
9
, pp.
582
591
.
23.
Anderson
,
W. K.
,
Thomas
,
J. L.
, and
Leer
,
B. V.
, 1986, “
Comparison of Finite Volume Flux Splittings for the Euler Equations
,”
AIAA J.
0001-1452,
24
, pp.
1453
1460
.
24.
Yoon
,
S.
, and
Jameson
,
A.
, 1988, “
Lower-Upper Symmetric-Gaiss–Seidel Method for the Euler and Navier–Stokes Equations
,”
AIAA J.
0001-1452,
26
, pp.
1025
1026
.
You do not currently have access to this content.