Asymmetric cavitation, in which cavity lengths are unequal on each blade, is known as a source of cavitation induced shaft vibration in turbomachinery. To investigate the relationship of the uneven cavity length and rotordynamic force in a cavitating inducer with three blades, we conducted two experiments. In one, the growth of cavity unevenness at the inception of synchronous rotating cavitation in cryogenic flow was observed, and in the other, the rotordynamic fluid forces in water were examined by using a rotordynamic test stand with active magnetic bearings. Rotordynamic performances were obtained within a wide range of cavitation numbers, and whirl/shaft speed ratios included supersynchronous/synchronous rotating cavitation. These experimental results indicate that the shaft vibration due to the rotating cavitation is one type of self-excited vibrations arising from the coupling of cavitation instability and rotordynamics.

1.
Acosta
,
A. J.
, 1958, “
An Experimental Study of Cavitating Inducer
,”
Proceedings of the Second Symposium on Naval Hydrodynamics
, Washington, DC, pp.
537
557
, Paper No. ONR/ACR-38.
2.
Kamijo
,
K.
,
Shimura
,
T.
, and
Watanabe
,
M.
, 1977, “
An Experimental Investigation of Cavitating Inducer Instability
,”
ASME Winter Annual Meeting
, Atlanta, GA, Paper No. 77-WA/FW-14.
3.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Maekawa
,
Y.
,
Watanabe
,
S.
, and
Hashimoto
,
T.
, 1997, “
Observations of Oscillating Cavitation of an Inducer
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
775
781
.
4.
Rosenmann
,
W.
, 1965, “
Experimental Investigations of Hydrodynamically Induced Shaft Forces With a Three-Bladed Inducer
,”
Winter Annual Meeting, Symposium on Cavitation in Fluid Machinery
,
ASME
,
New York
, pp.
172
195
.
5.
Hashimoto
,
T.
,
Yoshida
,
M.
,
Watanabe
,
M.
,
Kamijo
,
K.
, and
Tsujimoto
,
Y.
, 1997, “
Experimental Study on Rotating Cavitation of Rocket Propellant Pump Inducers
,”
J. Propul. Power
0748-4658,
13
, pp.
488
494
.
6.
Kobayashi
,
S.
, 2006, “
Effects of Shaft Vibration on Occurrence of Asymmetric Cavitation in Inducer
,”
JSME Int. J., Ser. B
1340-8054,
49
, pp.
1220
1225
.
7.
Yoshida
,
Y.
,
Kikuta
,
K.
,
Hasegawa
,
S.
,
Shimagaki
,
M.
, and
Tokumasu
,
T.
, 2007, “
Thermodynamic Effect on a Cavitating Inducer in Liquid Nitrogen
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
273
278
.
8.
Yoshida
,
Y.
,
Sasao
,
Y.
,
Watanabe
,
M.
,
Hashimoto
,
T.
,
Iga
,
Y.
, and
Ikohagi
,
T.
, 2009, “
Thermodynamic Effect on Rotating Cavitation in an Inducer
,”
ASME J. Fluids Eng.
0098-2202,
131
, p.
091302
.
9.
Yoshida
,
Y.
,
Nanri
,
H.
,
Kikuta
,
K.
,
Kazami
,
Y.
,
Iga
,
Y.
, and
Ikohagi
,
T.
, 2009, “
Thermodynamic Effect on Sub-Synchronous Rotating Cavitation and Surge Mode Oscillation in a Space Inducer
,”
ASME
, Vail, CO, Aug. 2–6, Paper No. FEDSM2009-78102.
10.
Yoshida
,
Y.
,
Kazami
,
Y.
,
Nagaura
,
K.
,
Shimagaki
,
M.
,
Iga
,
Y.
, and
Ikohagi
,
T.
, 2008, “
Interaction Between Uneven Cavity Length and Shaft Vibration at the Inception of Synchronous Rotating Cavitation
,”
The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Feb. 17–22, Paper No. ISROMAC12-2008-20140.
11.
Bhattacharyya
,
A.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
, 1997, “
Rotordynamic Forces in Cavitating Inducers
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
768
774
.
12.
d’Agostino
,
L.
,
d’Auria
,
F.
, and
Brennen
,
C. E.
, 1998, “
A Three-Dimensional Analysis of Rotordynamic Forces on Whirling and Cavitating Helical Inducers
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
698
704
.
13.
Eguchi
,
M.
, and
Maruta
,
Y.
, 2003, “
Development of Rotordynamics Measurement System With Active Magnetic Bearings
,”
Proceedings of the Tenth Asia-Pacific Vibration Conference
, Gold Coast, Australia, Vol.
1
, pp.
115
120
.
14.
Brennen
,
C. E.
, 2004,
Hydrodynamics of Pumps
,
Concepts ETI Inc. and Oxford University Press
,
Oxford
, pp.
261
266
.
15.
Watanabe
,
S.
,
Sato
,
K.
,
Tsujimoto
,
Y.
, and
Kamijo
,
K.
, 1999, “
Analysis of Rotating Cavitation in a Finite Pitch Cascade Using a Closed Cavity Model and a Singularity Method
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
834
840
.
16.
Horiguchi
,
H.
,
Watanabe
,
S.
,
Tsujimoto
,
Y.
, and
Aoki
,
M.
, 2000, “
A Theoretical Analysis of Alternate Blade Cavitation in Inducers
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
156
163
.
17.
Al-Nahwi
,
A. A.
,
Paduano
,
J. D.
, and
Nayfeh
,
S. A.
, 2003, “
Aerodynamic-Rotordynamic Interaction in Axial Compression Systems—Part 2: Impact of Interaction on Overall System Stability
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
416
424
.
You do not currently have access to this content.