The flow around circular smooth fixed cylinder in a large range of Reynolds numbers is considered in this paper. In order to investigate this canonical case, we perform CFD calculations and apply verification & validation (V&V) procedures to draw conclusions regarding numerical error and, afterwards, assess the modeling errors and capabilities of this (U)RANS method to solve the problem. Eight Reynolds numbers between Re = 10 and Re=5×105 will be presented with, at least, four geometrically similar grids and five discretization in time for each case (when unsteady), together with strict control of iterative and round-off errors, allowing a consistent verification analysis with uncertainty estimation. Two-dimensional RANS, steady or unsteady, laminar or turbulent calculations are performed. The original 1994 k-ω SST turbulence model by Menter is used to model turbulence. The validation procedure is performed by comparing the numerical results with an extensive set of experimental results compiled from the literature.

References

1.
Takami
,
H.
, and
Keller
,
H.
,
1969
, “
Steady Two-Dimensional Viscous Flow of an Incompressible Fluid Past a Circular Cylinder
,”
Phys. Fluids
,
12
, pp.
II-51
II-56
.10.1063/1.1692469
2.
Dennis
,
S.
, and
Chang
,
G.
,
1970
, “
Numerical Solutions for Steady Flow Past a Circular Cylinder at Reynolds Numbers up to 100
,”
J. Fluid Mech.
,
42
, pp.
471
489
.10.1017/S0022112070001428
3.
Dennis
,
S.
,
1973
, “
The Numerical Solution of the Vorticity Transport Equation
,”
Lect. Notes Phys.
,
2
, pp.
120
129
.10.1007/BFb0112668
4.
Fornberg
,
B.
,
1980
, “
A Numerical Study of Steady Viscous Flow Past a Circular Cylinder
,”
J. Fluid Mech.
,
98
, pp.
819
855
.10.1017/S0022112080000419
5.
Fornberg
,
B.
,
1985
, “
Steady Viscous Flow Past a Circular Cylinders up to Reynolds Number 600
,”
Comput. Fluids
,
61
, pp.
297
320
.10.1016/0021-9991(85)90089-0
6.
Tuann
,
S.
, and
Olson
,
M.
,
1978
, “
Numerical Studies of the Flow Around a Circular Cylinder by a Finite Element Method
,”
Comput. Phys.
,
6
, pp.
219
240
.10.1016/0045-7930(78)90015-4
7.
Nieuwstadt
,
F.
, and
Keller
,
H. B.
,
1973
, “
Viscous Flow Past Circular Cylinders
,”
Comput. Fluids
,
1
, pp.
59
71
.10.1016/0045-7930(73)90026-1
8.
Braza
,
M.
,
Chassaing
,
P.
, and
Minh
,
H.
,
1986
, “
Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
165
, pp.
79
130
.10.1017/S0022112086003014
9.
Meneghini
,
J.
, and
Bearman
,
P.
,
1993
, “
Numerical Simulation of High Amplitude Oscillatory-Flow About a Circular Cylinder Using a Discrete Vortex Method
,”
Proceedings of the AIAA Shear Flow Conference
,
Orlando
,
FL
, AIAA Paper No. 93-3288, pp.
1
11
.
10.
He
,
X.
, and
Doolen
,
G.
,
1997
, “
Lattice Boltzmann Method on a Curvilinear Coordinate System: Vortex Shedding Behind a Circular Cylinder
,”
Phys. Rev. E
,
56
, pp.
434
440
.10.1103/PhysRevE.56.434
11.
Mittal
,
S.
,
Kumar
,
V.
, and
Raghuvanshi
,
A.
,
1997
, “
Unsteady Incompressible Flows Past Two Cylinders in Tandem and Staggered Arrangements
,”
Int. J. Numer. Meth. Fluids
,
25
, pp.
1315
1344
.10.1002/(SICI)1097-0363(19971215)25:11<1315::AID-FLD617>3.0.CO;2-P
12.
Henderson
,
R.
,
1995
, “
Details of the Drag Curve Near the Onset of Vortex Shedding
,”
Phys. Fluids
,
7
, pp.
2102
2104
.10.1063/1.868459
13.
Dong
,
S.
, and
Karniadakis
,
G.
,
2005
, “
DNS of Flow Past a Stationary and Oscillating Cylinder at Re = 10,000
,”
J. Fluids Struct.
,
20
, p.
519531
.10.1016/j.jfluidstructs.2005.02.004
14.
de With
,
G.
,
Holdo
,
A.
, and
Huld
,
T.
,
2003
, “
The Use of Dynamic Grid Adaptation Algorithms for the Modeling of Flow Around a Circular Cylinder in Sub-Critical Flow Regime
,”
Int. J. Numer. Meth. Fluids
,
41
, pp.
789
808
.10.1002/fld.418
15.
von Karman Institute
,
2008
, VKI Turbulence Modelling Lecture Notes.
16.
Menter
,
F.
,
Egorov
,
Y.
, and
Rusch
,
D.
,
2005
, “
Steady and Unsteady Flow Modelling Using k-kL Model
,”
Turbul., Heat Mass Transfer
,
5
, pp.
403
406
.10.1615/ICHMT.2006.TurbulHeatMassTransf.800
17.
Travin
,
A.
,
Shur
,
M.
,
Strelets
,
M.
, and
Spalart
,
P.
,
1999
, “
Detached-Eddy Simulations Past a Circular Cylinder
,”
Flow, Turbul. Combust.
,
63
, pp.
293
313
.10.1023/A:1009901401183
18.
Vaz
,
G.
,
Mabilat
,
C.
,
van der Wal
,
R.
, and
Gallagher
,
P.
,
2007
, “
Viscous Flow Computations on a Smooth Cylinders: A Detailed Numerical Study With Validation
,”
Proceedings of the
OMAE
2007,
San Diego
,
CA
.10.1115/OMAE2007-29275
19.
Liu
,
C.
,
Zheng
,
X.
, and
Sung
,
C.
,
1998
, “
Preconditioned Multigrid Methods for Unsteady Incompressible Flows
,”
J. Comput. Phys.
,
139
, pp.
35
57
.10.1006/jcph.1997.5859
20.
Ong
,
M.
,
Utnes
,
T.
,
Holmedal
,
L.
,
Myrhaug
,
D.
, and
Pettersen
,
B.
,
2007
, “
Numerical Simulation of Flow Around a Smooth Circular Cylinder at High Reynolds Numbers
,”
Proceedings of the International Conference on Computational Methods in Marine Engineering 200
7
.
21.
AIAA
,
1998
, “
AIAA Guide for Verification and Validation of Computational Fluid Dynamics Simulations
,” Tech. Rep. No. AIAA-G-077-1998.
22.
ASME
,
2008
, “
ASME Guide on Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” Tech. Rep. ASME Committee No. PTC-61, ANSI Standard V&V-20.
23.
Eça
,
L.
,
Vaz
,
G.
, and
Hoekstra
,
M.
,
2010
, “
A Verification and Validation Exercise for the Flow Over a Backward Facing Step
,”
Proceedings of the ECCOMAS CFD 2010
,
Lisbon, Portugal
.
24.
Vaz
,
G.
,
Jaouen
,
F.
, and
Hoekstra
,
M.
,
2009
, “
Free-Surface Viscous Flow Computations: Validation of URANS Code FreSCo
,”
Proceedings of the
OMAE
2009,
Honolulu, HI
.10.1115/OMAE2009-79398
25.
Ferziger
,
J.
, and
Peric
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
, 3rd ed.,
Springer Verlag
,
Berlin
.
26.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
, pp.
1598
1605
.10.2514/3.12149
27.
Wilcox
,
D.
,
1993
, “
Turbulence Modeling for CFD
,”
DCW Industries, Palm Drive
,
La Canada, CA
.
28.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
29.
Walters
,
D.
, and
Leylek
,
J.
,
2004
, “
A New Model for Boundary Layer Transition Using a Single-Point RANS Approach
,”
ASME J. Turbomach.
,
126
, pp.
193
202
.10.1115/1.1622709
30.
Walters
,
D.
, and
Cokljat
,
D.
,
2008
, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow
,”
ASME J. Fluids Eng.
,
130
, p.
121401
.10.1115/1.2979230
31.
Smirnov
,
P.
, and
Menter
,
F.
,
2009
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart–Shur Correction Term
,”
ASME J. Turbomach.
,
131
, p.
041010
.10.1115/1.3070573
32.
Eça
,
L.
,
Hoekstra
,
M.
, and
Vaz
,
G.
,
2012
, “
Manufactured Solutions for Steady-Flow RANS Solvers
,”
Int. J. CFD.
(submitted).
33.
Eça
,
L.
,
Hoekstra
,
M.
, and
Vaz
,
G.
,
2012
, “
On the use of Method of Manufactured Solutions for Code Verification of RANS Solvers Based on Eddy-Viscosity Models
,”
Proceedings of the ASME V&V Conferenc
e
.
34.
Eça
,
L.
,
Vaz
,
G.
, and
Hoekstra
,
M.
,
2012
, “
Assessing Convergence Properties of RANS Solvers With Manufactured Solutions
,”
Proceedings of ECCOMAS2012
,
Vienna, Austria
.
35.
Eça
,
L.
,
2009
, “
Evaluation of Numerical Error Estimation Based on Grid Refinement Studies With the Method of the Manufactured Solutions
,”
Comput. Fluids
,
38
, pp.
1580
1591
.10.1016/j.compfluid.2009.01.003
36.
Eça
,
L.
, and
Hoekstra
,
M.
,
2008
, “
Proceedings of the 3rd Workshop on CFD Uncertainty Analysis
,”
Instituto Superior Técnico
,
Lisbon
,
Portugal
.
37.
Eça
,
L.
, and
Hoekstra
,
M.
,
2012
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
Comput. Fluids
(to be published).
38.
Eça
,
L.
,
Hoekstra
,
M.
, and
Vaz
,
G.
,
2012
, “
Estimation of the Numerical Uncertainty in Unsteady Flows With Grid Refinement Studies
,”
Comput. Fluids
(to be published).
39.
Koop
,
A.
,
Klaij
,
C.
, and
Vaz
,
G.
,
2011
, “
Viscous-Flow Calculations for Model and Full-Scale Current Loads on Typical Offshore Structures
,”
Proceedings of the ECCOMAS Marine 2011
,
Lisbon, Portugal
.
40.
Toxopeus
,
S.
,
2011
, “
Using CFD Calculations to Improve Predictions of Ship Manoeuvres
,”
Proceedings of RINA-CFD2011
,
London, UK
.
41.
Fathi
,
F.
,
Klaij
,
C.
, and
Koop
,
A.
,
2010
, “
Predicting Loads on a LNG Carrier With CFD
,”
Proceedings of the
OMAE
2010,
Shanghai, China
.10.1115/OMAE2010-20122
42.
Vaz
,
G.
,
Toxopeus
,
S.
, and
Holmes
,
S.
,
2010
, “
Calculation of Manoeuvring Forces on Submarines Using Two Viscous-Flow Solvers
,”
Proceedings of the
OMAE
2010,
Shanghai, China
.10.1115/OMAE2010-20373
43.
Koop
,
A.
,
Klaij
,
C.
, and
Vaz
,
G.
,
2010
, “
Predicting Wind Loads for FPSO Tandem Offloading Using CFD
,”
Proceedings of the
OMAE
2010,
Shanghai, China
.10.1115/OMAE2010-20284
44.
Monroy
,
C.
,
2007
, “
A RANSe Based Study of the Flow Behind a Cylinder. A First Step Towards Riser Flow
,” M.S. thesis,
Ecole Central de Nantes
,
Nantes, France
.
45.
Pengan
,
B.
,
2010
, “
Numerical Accuracy in RANS Simulations of the Flow Around a Cylinder
,” M.S. thesis,
ENSIETA
,
Brest, France
.
46.
Williamson
,
C.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Ann. Rev. Fluid Mech.
,
28
, pp.
477
539
.10.1146/annurev.fl.28.010196.002401
47.
Karniadakis
,
G.
, and
Triantafyllou
,
G.
,
1992
, “
Three-Dimensional Dynamics and Transition to Turbulence in the Wake of Bluff Objects
,”
J. Fluid Mech.
,
238
, pp.
1
30
.10.1017/S0022112092001617
48.
Rosetti
,
G. F.
,
Vaz
,
G.
, and
Fujarra
,
A.
,
2012
, “
Verification and Validation of URANS Calculations of the Flow Around Fixed-Smooth Cylinders for a Wide Range of Reynolds
,”
Proceedings of OMAE2012
,
Rio de Janeiro, Brazil
.
49.
de Oliveira Costa Neto
,
P. L.
,
2005
,
Estatística
,
Edgard Blucher, Portugal
(in Portuguese).
50.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary Layer Theory
, 8th ed.,
Springer Verlag
,
Berlin
.
51.
ESDU
,
1985
, “
Circular Cylindrical Structures: Dynamic Response to Vortex Shedding, Part 1: Calculation Procedures and Derivation
,” Tech. Rep. Item No. 85038,
Engineering Sciences Data Unit (ESDU), ESDU International
,
London
.
52.
Wu
,
M.
,
Wen
,
C.
,
Yen
,
R.
,
Weng
,
M.
, and
Wang
,
A.
,
2004
, “
Experimental and Numerical Study of the Separation Angle for Flow Around a Circular Cylinder at Low Reynolds Number
,”
J. Fluid Mech.
,
515
, pp.
233
260
.10.1017/S0022112004000436
53.
Norberg
,
C.
,
2003
, “
Fluctuating Lift on a Circular Cylinder: Review and New Measurements
,”
J. Fluids Struct.
,
17
, pp.
57
96
.10.1016/S0889-9746(02)00099-3
54.
Singh
,
S.
, and
Mittal
,
S.
,
2005
, “
Flow Past a Cylinder: Shear Layer Instability and Drag Crisis
,”
Int. J. Numer. Meth. Fluids
,
47
, pp.
75
98
.10.1002/fld.807
55.
Franzini
,
G.
,
Gonçalves
,
R.
,
Fujarra
,
A.
, and
Meneghini
,
J.
,
2012
, “
Experimental Forces Measurements on the Flow Around a Fixed and Yawed Cylinder in the Presence of Free-Surface
,”
Proceedings of the ISOPE 2012 22nd International Ocean and Polar Engineering Conference (accepted
)
.
56.
Mittal
,
R.
, and
Balachandar
,
S.
,
1995
, “
Effect of Three-Dimensionality on the Lift and Drag of Nominally Two-Dimensional Cylinders
,”
Phys. Fluids
,
8
, pp.
1841
1865
.10.1063/1.868500
57.
Gushchin
,
V.
, and
Shchennikov
,
V.
,
1974
, “
A Numerical Method of Solving the Navier–Stokes Equations
,” Zh. Vychisl. Mat. Mat. Fiz.,
14
, pp.
512
520
[
USSR Comput. Math. Math. Phys.
,
14
(
2)
, pp.
242
250
(1974)].10.1016/0041-5553(74)90061-5
58.
Ding
,
H.
,
Shu
,
C.
,
Yeo
,
K.
, and
Xu
,
D.
,
2004
, “
Simulation of Incompressible Viscous Flows Past a Circular Cylinder by Hybrid FD Scheme and Meshless Least Square Based Finite Difference Method
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
724
744
.10.1016/j.cma.2003.11.002
59.
Mittal
,
S.
,
2003
, “
Effect of a Slip Splitter Plate on Vortex Shedding From a Cylinder
,”
Phys. Fluids
,
15
, pp.
817
820
.10.1063/1.1540632
60.
Mittal
,
S.
, and
Kumar
,
V.
,
2001
, “
Flow Induced Vibrations of a Light Circular Cylinder at Reynolds Numbers 103 to 104
,”
J. Sound Vib.
,
245
, pp.
923
946
.10.1006/jsvi.2001.3612
61.
Wang
,
M. C.
,
Catalano
,
P.
, and
Iaccarino
,
G.
,
2001
, “
Prediction of High Reynolds Number Flow Over a Circular Cylinder Using LES With Wall Modeling
,” Center for Turbulence Research: Annual Research Briefs, pp.
45
50
.
62.
de With
,
G.
, and
Holdo
,
A.
,
2005
, “
The Use of Solution Adaptive Grid for Modeling Small Scale Turbulent Structures
,”
ASME J. Fluids Eng.
,
127
, pp.
936
944
.10.1115/1.1989359
63.
Sampaio
,
P.
, and
Coutinho
,
A.
,
2000
, “
Simulating Vortex Shedding at High Reynolds Numbers
,”
Proceedings of the 10th (2000) International Offshore and Polar Engineering Conferenc
e
.
You do not currently have access to this content.