In this paper, we use the homotopy analysis method as a tool to obtain analytic approximations to the nonlinear problem of the cooling of turbine disks with a non-Newtonian viscoelastic fluid. The application of this method is executed via a polynomial exponential basis. The effects on velocity and temperature profiles with variations of the cross viscosity parameter, the Reynolds number, and the Prandtl number are discussed. A comparison with corresponding results of the perturbation method is illustrated and also, as a result of application of the homotopy analysis method, an analytic evaluation for the Nusselt number compared to the perturbation method is achieved.
Issue Section:
Flows in Complex Systems
References
1.
Bohme
, G.
, 1987, Non-Newtonian Fluid Mechanics (North-Holland Series in Applied Mathematics and Mechanics)
, Vol. 31
, North-Holland
, Amsterdam
.2.
Akcay
, M.
, and Yukselen
, M. A.
, 1999, “Drag Reduction of a Non-Newtonian Fluid by Fluid Injection on a Moving Wall
,” Arch. Appl. Mech.
, 69
, pp. 215
–225
.3.
Berman
, A. S.
, 1953, “Laminar Flow in Channels With Porous Walls
,” J. Appl. Phys.
, 24
, pp. 1232
–1235
.4.
Yuan
, S. W.
, and Finkelstein
, A. B.
, 1956, “Laminar Pipe Flow With Injection and Suction Through a Porous Wall
,” ASME J. Heat Transfer
, 78
, pp. 719
–724
.5.
White
, F. M.,
Jr., Barfield
, B. F.
, and Coglia
, M. J.
, 1958, “Laminar Flow in Uniformly Porous Channel
,” ASME J. Appl. Mech.
, 80
, pp. 613
–617
.6.
Terrill
, R. M.
, 1965, “Laminar Flow in Uniformly Porous Channel With Large Injection
,” Aeronaut. Q.
, 16
, pp. 320
–332
.7.
White
, J. L.
, and Metzner
, A. B.
, 1965, “Constitutive Equations for Viscoelastic Fluids With Application to Rapid External Flows
,” AIChE J.
, 11
, pp. 324
–330
.8.
Debruge
, L. L.
, and Han
, L. S.
, 1972, “Heat Transfer in a Channel With a Porous Wall for Turbine Cooling Application
,” ASME J. Heat Transfer
, 11
, pp. 385
–390
.9.
Kurtcebe
, C.
, and Erim
, M. Z.
, 2002, “Heat Transfer of a Non-Newtonian Viscoinelastic Fluid in an Axisymmetric Channel With a Porous Wall for Turbine Cooling Application
,” Int. Commun. Heat Mass Transfer
, 29
, pp. 971
–982
.10.
Shin
, S.
, 1996, “The Effect of the Shear Rate Dependent Thermal Conductivity of Non-Newtonian Fluids on the Heat Transfer in a Pipe Flow
,” Int. Commun. Heat Mass Transfer
, 23
, pp. 665
–678
.11.
Goldstein
, R. J.
, Eckert
, E. R. G.
, Ibele
, W. E.
, Patankar
, S. V.
, Simon
, T. W.
, Kuehn
, T. H.
, Strykowski
, P. J.
, Tamma
, K. K.
, Bar-Cohen
, A.
, Heberlein
, J. V. R.
, Davidson
, J. H.
, Bischof
, J.
, Kulacki
, F. A.
, Kortshagen
, U.
, and Garrick
, S.
, 2001, “Heat Transfer-A Review of 1999 Literature
,” Int. J. Heat Mass Transfer
, 44
, pp. 3579
–3699
.12.
Goldstein
, R. J.
, Eckert
, E. R. G.
, Ibele
, W. E.
, Patankar
, S. V.
, Simon
, T. W.
, Kuehn
, T. H.
, Strykowski
, P. J.
, Tamma
, K. K.
, Heberlein
, J. V. R.
, Davidson
, J. H.
, Bishof
, J.
, Kulacki
, F. A.
, Kortshagen
, U.
, and Garrick
, S.
, 2003, “Heat Transfer-A Review of 2001 Literature
,” Int. J. Heat Mass Transfer
, 46
, pp. 1887
–1992
.13.
Goldstein
, R. J.
, Eckert
, E. R. G.
, Ibele
, W. E.
, Patankar
, S. V.
, Simon
, T. W.
, Kuehn
, T. H.
, Strykowski
, P. J.
, Tamma
, K. K.
, Bar-Cohen
, A.
, Heberlein
, J. V. R.
, Davidson
, J. H.
, Bishof
, J.
, Kulacki
, F. A.
, Kortshagen
, U.
, Garrick
, S.
, and Srinivasan
, V.
, 2005, “Heat Transfer-A Review of 2002 Literature
,” Int. J. Heat Mass Transfer
, 48
, pp. 819
–927
.14.
Goldstein
, R. J.
, Ibele
, W. E.
, Patankar
, S. V.
, Simon
, T. W.
, Kuehn
, T. H.
, Strykowski
, P. J.
, Tamma
, K. K.
, Heberlein
, J. V. R.
, Davidson
, J. H.
, Bischof
, J.
, Kulacki
, F. A.
, Kortshagen
, U.
, Garrick
, S.
, and Srinivasan
, V.
, 2006, “Heat Transfer-A Review of 2003 Literature
,” Int. J. Heat Mass Transfer
, 49
, pp. 451
–534
.15.
Cleeton
, J. P. E.
, Kavanagh
, R. M.
, and Parks
, G. T.
, 2009, “Blade Cooling Optimisation in Humid-Air and Steam-Injected Gas Turbines
,” Appl. Therm. Eng.
, 29
, pp. 3274
–3283
.16.
Kim
, K. M.
, Park
, J. S.
, Lee
, D. H.
, Lee
, T. W.
, and Cho
, H. H.
, 2011, “Analysis of Conjugated Heat Transfer, Stress and Failure in a Gas Turbine Blade With Circular Cooling Passages
,” Eng. Failure Anal.
, 18
, pp. 1212
–1222
.17.
Liao
, S. J.
, 1992, “The Proposed Homotopy Analysis Technique for the Solutions of Nonlinear Problems
,” Ph.D. thesis, Shanghai Jiao Tong University, Shanghai.18.
Liao
, S. J.
, 1999, “An Explicit Totally Analytic Approximate Solution for Blasius Viscous Flow Problems
,” Int. J. Non-Linear Mech.
, 34
, pp. 759
–769
.19.
Liao
, S. J.
, 2002, “An Analytic Approximation of the Drag Coefficient for the Viscous Flow Past a Sphere
,” Int. J. Non-Linear Mech.
, 37
, pp. 1
–18
.20.
Liao
, S. J.
, 2003, Beyond Perturbation: Introduction to Homotopy Analysis Method
, Chapman and Hall/CRC
, Boca Raton
.21.
Cole
, J. D.
, 1968, Perturbation Methods in Applied Mathematics
, Blaisdell
, Waltham
.22.
Bush
, A. W.
, 1992, Perturbation Methods for Engineers and Scientists
, CRC, Library of Engineering Mathematics
, Boca Raton
.23.
Nayfeh
, A. H.
, 2000, Perturbation Methods
, Wiley
, New York
.24.
Lyapunov
, A. M.
, 1992, General Problem on Stability of Motion
, Taylor & Francis
, London
.25.
Adomian
, G.
, 1988, “A Review of the Decomposition Method in Applied Mathematics
,” J. Math. Anal. Appl.
, 135
, pp. 501
–544
.26.
Adomian
, G.
, 1991, “A Review of the Decomposition Method and Some Recent Results for Nonlinear Equations
,” Comput. Math. Appl.
, 21
, pp. 101
–127
.27.
Adomian
, G.
, 1994, “Solution of Physical Problems by Decomposition
,” Comput. Math. Appl.
, 27
, pp. 145
–154
.28.
Adomian
, G.
, 1994, Solving Frontier Problems of Physics: The Decomposition Method
, Kluwer Academic
, Boston
.29.
Liao
, S. J.
, 2003, “An Explicit Analytic Solution to the Thomas-Fermi Equation
,” Appl. Math. Comput.
, 144
, pp. 495
–506
.30.
Liao
, S. J.
, 2005, “Comparison Between the Homotopy Analysis Method and Homotopy Perturbation Method
,” Appl. Math. Comput.
, 169
, pp. 1186
–1194
.31.
Liao
, S. J.
, Su
, J.
, and Chwang
, A. T.
, 2006, “Series Solutions for a Nonlinear Model of Combined Convective and Radiative Cooling of a Spherical Body
,” Int. J. Heat Mass Transfer
, 49
, pp. 2437
–2445
.32.
Liao
, S. J.
, and Tan
, Y.
, 2007, “A General Approach to Obtain Series Solutions of Nonlinear Differential Equations
,” Stud. Appl. Math.
, 119
, pp. 297
–355
.33.
Cheng
, J.
, Liao
, S. J.
, Mohapatra
, R. N.
, and Vajravelu
, K.
, 2008, “Series Solutions of Nano Boundary Layer Flows by Means of the Homotopy Analysis Method
,” J. Math. Anal. Appl.
, 343
, pp. 233
–245
.34.
Liao
, S. J.
, 2010, “An Optimal Homotopy-Analysis Approach for Strongly Nonlinear Differential Equations
,” Commun. Nonlinear Sci. Numer. Simulat.
, 15
, pp. 2003
–2016
.35.
Kousar
, N.
, and Liao
, S. J.
, 2011, “Unsteady Non-Similarity Boundary-Layer Flows Caused by an Impulsively Stretching Flat Sheet
,” Nonlinear Anal.: Real World Appl.
, 12
, pp. 333
–342
.36.
Rivlin
, R. S.
, and Ericksen
, J. L.
, 1955, “Stress-Deformation Relations for Isotropic Materials
,” J. Ration. Mech. Anal.
, 4
, pp. 323
–425
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.