Immersed boundary methods have been widely used for simulating flows with complex geometries, as quality boundary-conforming grids are usually difficult to generate for complex geometries, especially when motion and/or deformation is involved. A major task in immersed boundary simulations is to inject the immersed boundary information into the background Cartesian grid, such as the inside/outside status of a grid point with regard to the immersed boundary and the accurate subcell position of the immersed boundary for a grid point next to it. Complex geometries in immersed boundary methods can be conveniently represented with triangulated surfaces placed upon underlying Cartesian grids in a Lagrangian manner. Regular, intuitive implementations using triangulations can be error-prone and/or cumbersome in dealing with robustness issues. In addition, they can be prohibitively expensive for high resolution simulations with complex moving/deforming boundaries. In this paper, a simple, robust, and fast procedure is developed for setting up complex triangulations in immersed boundary simulations. Central to this setup procedure are a ray casting and closest surface point computation algorithms. Several illustrative examples, including high resolution cases with Cartesian grids of up to 2.1 × 109 points and triangulations of up to 1.3 × 106 surface elements, are performed to demonstrate the robustness and efficiency of our procedure.

References

1.
Gilmanov
,
A.
,
Sotiropoulos
,
F.
, and
Balaras
,
E.
,
2003
, “
A General Reconstruction Algorithm for Simulating Flows With Complex 3D Immersed Boundaries on Cartesian Grids
,”
J. Comput. Phys.
,
191
(
2
), pp.
660
669
.10.1016/S0021-9991(03)00321-8
2.
Gilmanov
,
A.
, and
Sotiropoulos
,
F.
,
2005
, “
A Hybrid Cartesian/Immersed Boundary Method for Simulating Flows With 3D, Geometrically Complex, Moving Bodies
,”
J. Comput. Phys.
,
207
(
2
), pp.
457
492
.10.1016/j.jcp.2005.01.020
3.
Choi
,
J.-I.
,
Oberoi
,
R. C.
,
Edwards
,
J. R.
, and
Rosati
,
J. A.
,
2007
, “
An Immersed Boundary Method for Complex Incompressible Flows
,”
J. Comput. Phys.
,
224
(
2
), pp.
757
784
.10.1016/j.jcp.2006.10.032
4.
Martin
,
A. D.
,
1998
, ADMesh version 0.95, https://sites.google.com/a/varlog.com/www/admesh-htm, accessed Jan. 1, 2012.
5.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
(
1
), pp.
35
60
.10.1006/jcph.2000.6484
6.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.10.1016/j.jcp.2008.01.028
7.
O'Rourke
,
J.
,
1998
,
Computational Geometry in C
, 2nd ed.,
Cambridge University Press
,
New York
.
8.
Borazjani
,
I.
,
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2008
, “
Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction With Complex 3D Rigid Bodies
,”
J. Comput. Phys.
,
227
(
16
), pp.
7587
7620
.10.1016/j.jcp.2008.04.028
9.
Iaccarino
,
G.
, and
Verzicco
,
R.
,
2003
, “
Immersed Boundary Technique for Turbulent Flow Simulations
,”
ASME Appl. Mech. Rev.
,
56
(
3
), pp.
331
347
.10.1115/1.1563627
10.
Aftosmis
,
M. J.
,
Berger
,
M. J.
, and
Melton
,
J. E.
,
1998
, “
Robust and Efficient Cartesian Mesh Generation for Component-Based Geometry
,”
AIAA J.
,
36
, pp.
952
960
.10.2514/2.464
11.
Tecplot, Inc.
,
2011
, “
Tecplot 3602011 Data Format Guide, Release 2
,” http://download.tecplot.com/360/current/dataformat.pdf, accessed Jan. 1, 2012.
12.
Popinet
,
S.
,
2011
, “
The GNU Triangulated Surface Library
,” http://gts.sourceforge.net/, accessed Jan. 1, 2012.
13.
Ericson
,
C.
,
2005
,
Real-Time Collision Detection
,
Morgan Kaufmann
,
San Francisco
.
14.
Balaras
,
E.
,
2004
, “
Modeling Complex Boundaries Using an External Force Field on Fixed Cartesian Grids in Large-Eddy Simulations
,”
Comput. Fluids
,
33
(
3
), pp.
375
404
.10.1016/S0045-7930(03)00058-6
15.
Balaras
,
E.
, and
Yang
,
J.
,
2005
, “
Nonboundary Conforming Methods for Large-Eddy Simulations of Biological Flows
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
851
857
.10.1115/1.1988346
16.
Yang
,
J.
, and
Balaras
,
E.
,
2006
, “
An Embedded-Boundary Formulation for Large-Eddy Simulation of Turbulent Flows Interacting With Moving Boundaries
,”
J. Comput. Phys.
,
215
(
1
), pp.
12
40
.10.1016/j.jcp.2005.10.035
17.
Yang
,
J.
,
Preidikman
,
S.
, and
Balaras
,
E.
,
2008
, “
A Strongly Coupled, Embedded-Boundary Method for Fluid-Structure Interactions of Elastically Mounted Rigid Bodies
,”
J. Fluids Struct.
,
24
(
2
), pp.
167
182
.10.1016/j.jfluidstructs.2007.08.002
18.
Yang
,
J.
, and
Stern
,
F.
,
2009
, “
Sharp Interface Immersed-Boundary/Level-Set Method for Wave-Body Interactions
,”
J. Comput. Phys.
,
228
(
17
), pp.
6590
6616
.10.1016/j.jcp.2009.05.047
19.
Yang
,
J.
, and
Stern
,
F.
,
2012
, “
A Simple and Efficient Direct Forcing Immersed Boundary Framework for Fluid-Structure Interactions
,”
J. Comput. Phys.
,
231
(
15
), pp.
5029
5061
.10.1016/j.jcp.2012.04.012
You do not currently have access to this content.