The performance of a porous disk with hierarchical bifurcating flow passages has been examined. The hierarchical bifurcating flow passages in the heat exchanger mimic those seen in the vascular systems of plants and animals. The effect of bifurcation angle, porosity, and pore size on the pressure drop across a porous disk was examined computationally. The pressure drop across the porous disk was found to increase as the pore size decreased. As the bifurcation angle increased the pressure drop also increased. At high porosities the bifurcation angles did not have an impact on the pressure drop across the porous disk due to flow behavior. Similarly, the effect of bifurcation angle on pressure drop decreased as the pore size increased.
Issue Section:
Fundamental Issues and Canonical Flows
References
1.
Tuckerman
, B. B.
, and Pease
, R. F. W.
, 1981
, “High-Performance Heat Sinking for VLSI
,” IEEE Electron Device Lett.
, 2
(5
), pp. 126
–129
.10.1109/EDL.1981.253672.
West
, G. B.
, Brown
, J. H.
, and Enquist
, B. J.
, 1997
, “A General Model for the Origin of Allometric Scaling Laws in Biology
,” Science
, 276
, pp. 122
–126
.10.1126/science.276.5309.1223.
West
, G. B.
, Brown
, J. H.
, and Enquist
, B. J.
, 1999
, “The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms
,” Science
, 284
, pp. 1677
–1679
.10.1126/science.284.5420.16774.
West
, G. B.
, 1999
, “The Origin of Universal Scaling Laws in Biology
,” Phys. A
, 263
, pp. 104
–113
.10.1016/S0378-4371(98)00639-65.
Bejan
, A.
, 2000
, Shape and Structure, From Engineering to Nature
, Cambridge University Press
, Cambridge, UK
.6.
Bejan
, A.
, 1997
, “Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,” Int. J. Heat Mass Transfer
, 40
(4
), pp. 799
–816
.10.1016/0017-9310(96)00175-57.
Bejan
, A.
, and Lorente
, S.
, 2010
, “The Constructal Law of Design and Evolution in Nature
,” Philos. Trans. R. Soc. London, Ser. B
, 35
(1545
), pp. 1335
–1347
.10.1098/rstb.2009.03028.
Bejan
, A.
, and Lorente
, S.
, 2006
, “Constructal Theory of Generation of Configuration in Nature and Engineering
,” J. Appl. Phys.
, 100
(4
), p. 041301
.10.1063/1.22218969.
Bejan
, A.
, and Errera
, M. R.
, 2000
, “Convective Trees of Fluid Channels for Volumetric Cooling
,” Int. J. Heat Mass Transfer
, 43
, pp. 3105
–3118
.10.1016/S0017-9310(99)00353-110.
Calamas
, D.
, and Baker
, J.
, 2013
, “Tree-Like Branching Fins: Performance and Natural Convective Heat Transfer Behavior
,” Int. J. Heat Mass Transfer
, 62
, pp. 350
–361
.10.1016/j.ijheatmasstransfer.2012.12.05011.
Calamas
, D.
, and Baker
, J.
, 2013
, “Behavior of Thermally Radiating Tree-Like Fins
,” J. Heat Transfer
(accepted).12.
Murray
, C. D.
, 1926
, “The Physiological Principle of Minimum Work. I. The Vascular System and the Cost of Blood Volume
,” Proceedings of the National Academy of Sciences
, 12
(3
), pp. 207
–214
.10.1073/pnas.12.3.20713.
Pence
, D. V.
, 2002
, “Reduced Pumping Power and Wall Temperature in Microchannel Heat Sinks With Fractal-Like Branching Channel Networks
,” Microscale Thermophys. Eng.
, 6
, pp. 319
–330
.10.1080/1089395029009835914.
Pence
, D. V.
, 2000
, “Improved Thermal Efficiency and Temperature Uniformity Using Fractal-Like Branching Channel Networks
,” Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale
, New York
, pp. 142
–148
.15.
Alharbi
, A. Y.
, Pence
, D. V.
, and Cullion
, R. N.
, 2004
, “Fluid Flow Through Microscale Fractal-Like Branching Channel Networks
,” ASME J. Fluids Eng.
, 125
(6
), pp. 1051
–1057
.10.1115/1.162568416.
Alharbi
, A. Y.
, Pence
, D. V.
, and Cullion
, R. N.
, 2004
, “Thermal Characteristics of Microscale Fractal-Like Branching Channels
,” ASME J. Heat Transfer
, 126
(5
), pp. 744
–755
.10.1115/1.179523617.
Calamas
, D.
, and Baker
, J.
, 2013
, “Performance of a Biologically-Inspired Heat Exchanger With Hierarchical Bifurcating Flow Passages
,” J. Thermophys. Heat Transfer
, 27
(1
), pp. 80
–90
.10.2514/1.T395018.
Wang
, X. Q.
, Mujumdar
, A. S.
, and Yap
, C.
, 2006
, “Thermal Characteristics of Tree-Shaped Microchannel Nets for Cooling of a Rectangular Heat Sink
,” Int. J. Therm. Sci.
, 45
(11
), pp. 1103
–1112
.10.1016/j.ijthermalsci.2006.01.01019.
Wang
, X. Q.
, Mujumdar
, A. S.
, and Yap
, C.
, 2006
, “Numerical Analysis of Blockage and Optimization of Heat Transfer Performance of Fractal-Like Microchannel Nets
,” ASME J. Electron. Packag.
, 128
(1
), pp. 38
–45
.10.1115/1.215900720.
Chen
, Y.
, and Cheng
, P.
, 2002
, “Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets
,” Int. J. Heat Mass Transfer
, 45
(13
), pp. 2643
–2648
.10.1016/S0017-9310(02)00013-321.
Chen
, Y.
, and Cheng
, P.
, 2005
, “An Experimental Investigation on the Thermal Efficiency of Fractal Tree-Like Microchannel Nets
,” Int. Commun. Heat Mass Transfer
, 32
(7
), pp. 931
–938
.10.1016/j.icheatmasstransfer.2005.02.00122.
Senn
, S. M.
, and Poulikakos
, D.
, 2004
, “Laminar Mixing, Heat Transfer and Pressure Drop in Tree-Like Microchannel Nets and Their Application for Thermal Management in Polymer Electrolyte Fuel Cells
,” J. Power Sources
, 130
(1–2
), pp. 178
–191
.10.1016/j.jpowsour.2003.12.02523.
Wang
, X. Q.
, Mujumdar
, A. S.
, and Yap
, C.
, 2007
, “Effect of Bifurcation Angle in Tree-Shaped Microchannel Networks
,” J. Appl. Phys.
, 102
(7
), p. 073530
.10.1063/1.279437924.
Allouache
, N.
, and Chikh
, S.
, 2004
, “Entropy Generation in a Partly Porous Heat Exchanger
,” Computer Aided Chem. Eng.
, 18
, pp. 139
–144
.10.1016/S1570-7946(04)80089-025.
Al-Salem
, K.
, Oztop
, H. F.
, and Kiwan
, S.
, 2011
, “Effects of Porosity and Thickness of Porous Sheets on Heat Transfer Enhancement in a Cross Flow Over Heat Cylinder
,” Int. Commun. Heat Mass Transfer
, 38
, pp. 1279
–1282
.10.1016/j.icheatmasstransfer.2011.07.00626.
Lan
, X. K.
, and Khodadadi
, J. M.
, 1993
, “Fluid Flow and Heat Transfer Through a Porous Medium Channel With Permeable Walls
,” Int. J. Heat Mass Transfer
, 36
(8
), pp. 2242
–2245
.10.1016/S0017-9310(05)80156-527.
Mohamad
, A. A.
, 2003
, “Heat Transfer Enhancements in Heat Exchangers Fitted With Porous Media Part I: Constant Wall Temperature
,” Int. J. Therm. Sci.
, 42
, pp. 385
–395
.10.1016/S1290-0729(02)00039-X28.
Narasimhan
, A.
, and Raju
, K. S.
, 2007
, “Effect of Variable Permeability Porous Medium Inter-Connectors on the Thermo-Hydraulics of Heat Exchanger Modeled as Porous Media
,” Int. J. Heat Mass Transfer
, 50
, pp. 4052
–4062
.10.1016/j.ijheatmasstransfer.2007.01.05829.
Odabaee
, M.
, and Hooman
, K.
, 2012
, “Metal Foam Heat Exchangers for Heat Transfer Augmentation from a Tube Bank
,” Appl. Therm. Eng.
, 36
, pp. 456
–463
.10.1016/j.applthermaleng.2011.10.06330.
Pavel
, B. I.
, and Mohamad
, A. A.
, 2004
, “An Experimental and Numerical Study on Heat Transfer Enhancement for Gas Heat Exchangers Fitted With Porous Media
,” Int. J. Heat Mass Transfer
, 47
, pp. 4939
–4952
.10.1016/j.ijheatmasstransfer.2004.06.01431.
Targui
, N.
, and Kahalerras
, H.
, 2008
, “Analysis of Fluid Flow and Heat Transfer in a Double Pipe Heat Exchanger With Porous Structures
,” Energy Convers. Manage.
, 49
, pp. 3217
–3229
.10.1016/j.enconman.2008.02.01032.
Yang
, Y.
, and Hwang
, M.
, 2009
, “Numerical Simulation of Turbulent Fluid Flow and Heat Transfer Characteristics in Heat Exchangers Fitted With Porous Media
,” Int. J. Heat Mass Transfer
, 52
, pp. 2956
–2965
.10.1016/j.ijheatmasstransfer.2009.02.02433.
Zhao
, T. S.
, and Song
, Y. J.
, 2001
, “Forced Convection in a Porous Medium Heated by a Permeable Wall Perpendicular to Flow Direction: Analyses and Measurements
,” Int. J. Heat Mass Transfer
, 44
, pp. 1031
–1037
.10.1016/S0017-9310(00)00171-X34.
Reid
, R. C.
, Prausnitz
, J. M.
, and Poling
, B. E.
, 1987
, The Properties of Gases and Liquids
, 2nd ed., McGraw-Hill
, New York
.35.
Launder
, B. E.
, and Sharma
, B. I.
, 1974
, “Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,” Lett. Heat Mass Transfer
, 1
(1
), pp. 131
–138
.10.1016/0094-4548(74)90150-736.
von Karman
, T.
, 1930
, “Mechanische Ahnlichkeit und Turbulenz
,” Nachr. Ges. Wiss. Goettingen
, 5
, pp. 58
–76
.37.
Glowinski
, R.
, and Le Tallec
, P.
, 1989
, Augmented Lagrangian Methods and Operator-Splitting Methods in Nonlinear Mechanics
, SIAM
, Philadelphia, PA
.38.
Marchuk
, G. I.
, 1982
, Methods of Numerical Mathematics
, Springer-Verlag
, Berlin
.39.
Samarskii
, A. A.
, 1989
, Theory of Difference Schemes
, Nauka
, Moscow
.40.
Roach
, P. J.
, 1998
, Technical Reference of Computational Fluid Dynamics
, Hermosa Publishers
, Albuquerque, NM
.41.
Hirsch
, C.
, 1998
, Numerical Computation of Internal and External Flows
, John Wiley and Sons
, Chichester, UK
.42.
Patankar
, S. V.
, 1980
, Numerical Heat Transfer and Fluid Flow
, Hemisphere
, Washington, D.C
.43.
Calamas
, D.
, and Baker
, J.
, 2013
, “Performance Characteristics of a Biologically-Inspired Solid-Liquid Heat Exchanger
,” Exp. Heat Transfer
, (submitted).44.
Dukhan
, N.
, and Patel
, P.
, 2008
, “Equivalent Particle Diameter and Length Scale for Pressure Drop in Porous Metals
,” Exp. Therm. Fluid Sci.
, 32
, pp. 1059
–1067
.10.1016/j.expthermflusci.2007.12.001Copyright © 2013 by ASME
You do not currently have access to this content.