The performance of a porous disk with hierarchical bifurcating flow passages has been examined. The hierarchical bifurcating flow passages in the heat exchanger mimic those seen in the vascular systems of plants and animals. The effect of bifurcation angle, porosity, and pore size on the pressure drop across a porous disk was examined computationally. The pressure drop across the porous disk was found to increase as the pore size decreased. As the bifurcation angle increased the pressure drop also increased. At high porosities the bifurcation angles did not have an impact on the pressure drop across the porous disk due to flow behavior. Similarly, the effect of bifurcation angle on pressure drop decreased as the pore size increased.

References

1.
Tuckerman
,
B. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
West
,
G. B.
,
Brown
,
J. H.
, and
Enquist
,
B. J.
,
1997
, “
A General Model for the Origin of Allometric Scaling Laws in Biology
,”
Science
,
276
, pp.
122
126
.10.1126/science.276.5309.122
3.
West
,
G. B.
,
Brown
,
J. H.
, and
Enquist
,
B. J.
,
1999
, “
The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms
,”
Science
,
284
, pp.
1677
1679
.10.1126/science.284.5420.1677
4.
West
,
G. B.
,
1999
, “
The Origin of Universal Scaling Laws in Biology
,”
Phys. A
,
263
, pp.
104
113
.10.1016/S0378-4371(98)00639-6
5.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
Cambridge, UK
.
6.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
799
816
.10.1016/0017-9310(96)00175-5
7.
Bejan
,
A.
, and
Lorente
,
S.
,
2010
, “
The Constructal Law of Design and Evolution in Nature
,”
Philos. Trans. R. Soc. London, Ser. B
,
35
(
1545
), pp.
1335
1347
.10.1098/rstb.2009.0302
8.
Bejan
,
A.
, and
Lorente
,
S.
,
2006
, “
Constructal Theory of Generation of Configuration in Nature and Engineering
,”
J. Appl. Phys.
,
100
(
4
), p.
041301
.10.1063/1.2221896
9.
Bejan
,
A.
, and
Errera
,
M. R.
,
2000
, “
Convective Trees of Fluid Channels for Volumetric Cooling
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3105
3118
.10.1016/S0017-9310(99)00353-1
10.
Calamas
,
D.
, and
Baker
,
J.
,
2013
, “
Tree-Like Branching Fins: Performance and Natural Convective Heat Transfer Behavior
,”
Int. J. Heat Mass Transfer
,
62
, pp.
350
361
.10.1016/j.ijheatmasstransfer.2012.12.050
11.
Calamas
,
D.
, and
Baker
,
J.
,
2013
, “
Behavior of Thermally Radiating Tree-Like Fins
,”
J. Heat Transfer
(accepted).
12.
Murray
,
C. D.
,
1926
, “
The Physiological Principle of Minimum Work. I. The Vascular System and the Cost of Blood Volume
,”
Proceedings of the National Academy of Sciences
,
12
(
3
), pp.
207
214
.10.1073/pnas.12.3.207
13.
Pence
,
D. V.
,
2002
, “
Reduced Pumping Power and Wall Temperature in Microchannel Heat Sinks With Fractal-Like Branching Channel Networks
,”
Microscale Thermophys. Eng.
,
6
, pp.
319
330
.10.1080/10893950290098359
14.
Pence
,
D. V.
,
2000
, “
Improved Thermal Efficiency and Temperature Uniformity Using Fractal-Like Branching Channel Networks
,”
Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale
,
New York
, pp.
142
148
.
15.
Alharbi
,
A. Y.
,
Pence
,
D. V.
, and
Cullion
,
R. N.
,
2004
, “
Fluid Flow Through Microscale Fractal-Like Branching Channel Networks
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
1051
1057
.10.1115/1.1625684
16.
Alharbi
,
A. Y.
,
Pence
,
D. V.
, and
Cullion
,
R. N.
,
2004
, “
Thermal Characteristics of Microscale Fractal-Like Branching Channels
,”
ASME J. Heat Transfer
,
126
(
5
), pp.
744
755
.10.1115/1.1795236
17.
Calamas
,
D.
, and
Baker
,
J.
,
2013
, “
Performance of a Biologically-Inspired Heat Exchanger With Hierarchical Bifurcating Flow Passages
,”
J. Thermophys. Heat Transfer
,
27
(
1
), pp.
80
90
.10.2514/1.T3950
18.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2006
, “
Thermal Characteristics of Tree-Shaped Microchannel Nets for Cooling of a Rectangular Heat Sink
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1103
1112
.10.1016/j.ijthermalsci.2006.01.010
19.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2006
, “
Numerical Analysis of Blockage and Optimization of Heat Transfer Performance of Fractal-Like Microchannel Nets
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
38
45
.10.1115/1.2159007
20.
Chen
,
Y.
, and
Cheng
,
P.
,
2002
, “
Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2643
2648
.10.1016/S0017-9310(02)00013-3
21.
Chen
,
Y.
, and
Cheng
,
P.
,
2005
, “
An Experimental Investigation on the Thermal Efficiency of Fractal Tree-Like Microchannel Nets
,”
Int. Commun. Heat Mass Transfer
,
32
(
7
), pp.
931
938
.10.1016/j.icheatmasstransfer.2005.02.001
22.
Senn
,
S. M.
, and
Poulikakos
,
D.
,
2004
, “
Laminar Mixing, Heat Transfer and Pressure Drop in Tree-Like Microchannel Nets and Their Application for Thermal Management in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
130
(
1–2
), pp.
178
191
.10.1016/j.jpowsour.2003.12.025
23.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2007
, “
Effect of Bifurcation Angle in Tree-Shaped Microchannel Networks
,”
J. Appl. Phys.
,
102
(
7
), p.
073530
.10.1063/1.2794379
24.
Allouache
,
N.
, and
Chikh
,
S.
,
2004
, “
Entropy Generation in a Partly Porous Heat Exchanger
,”
Computer Aided Chem. Eng.
,
18
, pp.
139
144
.10.1016/S1570-7946(04)80089-0
25.
Al-Salem
,
K.
,
Oztop
,
H. F.
, and
Kiwan
,
S.
,
2011
, “
Effects of Porosity and Thickness of Porous Sheets on Heat Transfer Enhancement in a Cross Flow Over Heat Cylinder
,”
Int. Commun. Heat Mass Transfer
,
38
, pp.
1279
1282
.10.1016/j.icheatmasstransfer.2011.07.006
26.
Lan
,
X. K.
, and
Khodadadi
,
J. M.
,
1993
, “
Fluid Flow and Heat Transfer Through a Porous Medium Channel With Permeable Walls
,”
Int. J. Heat Mass Transfer
,
36
(
8
), pp.
2242
2245
.10.1016/S0017-9310(05)80156-5
27.
Mohamad
,
A. A.
,
2003
, “
Heat Transfer Enhancements in Heat Exchangers Fitted With Porous Media Part I: Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
42
, pp.
385
395
.10.1016/S1290-0729(02)00039-X
28.
Narasimhan
,
A.
, and
Raju
,
K. S.
,
2007
, “
Effect of Variable Permeability Porous Medium Inter-Connectors on the Thermo-Hydraulics of Heat Exchanger Modeled as Porous Media
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4052
4062
.10.1016/j.ijheatmasstransfer.2007.01.058
29.
Odabaee
,
M.
, and
Hooman
,
K.
,
2012
, “
Metal Foam Heat Exchangers for Heat Transfer Augmentation from a Tube Bank
,”
Appl. Therm. Eng.
,
36
, pp.
456
463
.10.1016/j.applthermaleng.2011.10.063
30.
Pavel
,
B. I.
, and
Mohamad
,
A. A.
,
2004
, “
An Experimental and Numerical Study on Heat Transfer Enhancement for Gas Heat Exchangers Fitted With Porous Media
,”
Int. J. Heat Mass Transfer
,
47
, pp.
4939
4952
.10.1016/j.ijheatmasstransfer.2004.06.014
31.
Targui
,
N.
, and
Kahalerras
,
H.
,
2008
, “
Analysis of Fluid Flow and Heat Transfer in a Double Pipe Heat Exchanger With Porous Structures
,”
Energy Convers. Manage.
,
49
, pp.
3217
3229
.10.1016/j.enconman.2008.02.010
32.
Yang
,
Y.
, and
Hwang
,
M.
,
2009
, “
Numerical Simulation of Turbulent Fluid Flow and Heat Transfer Characteristics in Heat Exchangers Fitted With Porous Media
,”
Int. J. Heat Mass Transfer
,
52
, pp.
2956
2965
.10.1016/j.ijheatmasstransfer.2009.02.024
33.
Zhao
,
T. S.
, and
Song
,
Y. J.
,
2001
, “
Forced Convection in a Porous Medium Heated by a Permeable Wall Perpendicular to Flow Direction: Analyses and Measurements
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1031
1037
.10.1016/S0017-9310(00)00171-X
34.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
,
1987
,
The Properties of Gases and Liquids
, 2nd ed.,
McGraw-Hill
,
New York
.
35.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
1
), pp.
131
138
.10.1016/0094-4548(74)90150-7
36.
von Karman
,
T.
,
1930
, “
Mechanische Ahnlichkeit und Turbulenz
,”
Nachr. Ges. Wiss. Goettingen
,
5
, pp.
58
76
.
37.
Glowinski
,
R.
, and
Le Tallec
,
P.
,
1989
,
Augmented Lagrangian Methods and Operator-Splitting Methods in Nonlinear Mechanics
,
SIAM
,
Philadelphia, PA
.
38.
Marchuk
,
G. I.
,
1982
,
Methods of Numerical Mathematics
,
Springer-Verlag
,
Berlin
.
39.
Samarskii
,
A. A.
,
1989
,
Theory of Difference Schemes
,
Nauka
,
Moscow
.
40.
Roach
,
P. J.
,
1998
,
Technical Reference of Computational Fluid Dynamics
,
Hermosa Publishers
,
Albuquerque, NM
.
41.
Hirsch
,
C.
,
1998
,
Numerical Computation of Internal and External Flows
,
John Wiley and Sons
,
Chichester, UK
.
42.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, D.C
.
43.
Calamas
,
D.
, and
Baker
,
J.
,
2013
, “
Performance Characteristics of a Biologically-Inspired Solid-Liquid Heat Exchanger
,”
Exp. Heat Transfer
, (submitted).
44.
Dukhan
,
N.
, and
Patel
,
P.
,
2008
, “
Equivalent Particle Diameter and Length Scale for Pressure Drop in Porous Metals
,”
Exp. Therm. Fluid Sci.
,
32
, pp.
1059
1067
.10.1016/j.expthermflusci.2007.12.001
You do not currently have access to this content.