Analytical solutions for slip flows in the hydrodynamic entrance region of tubes and channels are examined. These solutions employ a linearized axial momentum equation using Targ's method. The momentum equation is subjected to a first order Navier slip boundary condition. The accuracy of these solutions is examined using computational fluid dynamics (CFD) simulations. CFD simulations utilized the full Navier–Stokes equations, so that the implications of the approximate linearized axial momentum equation could be fully assessed. Results are presented in terms of the dimensionless mean wall shear stress, τ, as a function of local dimensionless axial coordinate, ξ, and relative slip parameter, β. These solutions can be applied to either rarefied gas flows when compressibility effects are small or apparent liquid slip over hydrophobic and superhydrophobic surfaces. It has been found that, under slip conditions, the minimum Reynolds number should be ReDh>100 in order for the approximate linearized solution to remain valid.

References

1.
Navier
,
C. L. M. H.
,
1823
, “
Memoire sur les Lois du Movement des Fluids
,”
Mem. Acad. R. Sci. Inst. Fr.
,
6
, pp.
389
440
.
2.
Kennard
,
E. H.
,
1938
,
Kinetic Theory of Gases
,
McGraw-Hill
,
New York
.
3.
Present
,
R. D.
,
1958
,
Kinetic Theory of Gases
,
McGraw-Hill
,
New York
.
4.
Loeb
,
L.
,
1961
,
Kinetic Theory of Gases
,
Dover
,
New York
.
5.
Ebert
,
W. A.
, and
Sparrow
,
E. M.
,
1965
, “
Slip Flow in Rectangular and Annular Ducts
,”
ASME J. Basic Eng.
,
87
, pp.
1018
1024
.10.1115/1.3650793
6.
Arkilic
,
E. B.
,
Breuer
,
K. S.
, and
Schmidt
,
M. A.
,
1997
, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
,
6
, pp.
167
178
.10.1109/84.585795
7.
Morini
,
G. L.
,
Lorenzini
,
M.
, and
Spiga
,
M.
,
2005
, “
A Criterion for Experimental Validation of Slip Flow Models for Incompressible Rarefied Gases Through Micro-Channels
,”
Microfluid. Nanofluid.
,
1
, pp.
190
196
.10.1007/s10404-004-0028-1
8.
Duan
,
Z. P.
, and
Muzychka
,
Y. S.
,
2006
, “
Slip Flow in Elliptic Microchannels
,”
Int. J. Therm. Sci.
,
46
, pp.
1104
1111
.10.1016/j.ijthermalsci.2007.01.026
9.
Duan
,
Z. P.
, and
Muzychka
,
Y. S.
,
2007
, “
Slip Flow in Non-Circular MicroChannels
,”
Microfluid. Nanofluid.
,
3
, pp.
473
484
.10.1007/s10404-006-0141-4
10.
Duan
,
Z. P.
, and
Yovanovich
,
M. M.
,
2010
, “
A Compact Model for Gaseous Slip Flow in Non-Circular Micro-Channels
,”
Proceedings of the 2010 ICNMM-FEDSM
,
Montreal
, August 1–5.
11.
Lauga
,
E.
, and
Stone
,
H. A.
,
2003
, “
Effective Slip in Pressure Driven Stokes Flow
,”
J. Fluid Mech.
,
489
, pp.
55
77
.10.1017/S0022112003004695
12.
Sbragaglia
,
M.
, and
Prosperetti
,
A.
,
2007
, “
A Note on the Effective Slip Properties for Microchannel Flows With Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
19
, p.
043603
.10.1063/1.2716438
13.
Ybert
,
C.
,
Barentin
,
C.
,
Cottin-Bizonne
,
C.
,
Joseph
,
P.
, and
Bocquet
,
L.
,
2007
, “
Achieving Large Slip With Superhydrophobic Surfaces: Scaling Laws for Generic Geometries
,”
Phys. Fluids
,
19
, p.
123601
.10.1063/1.2815730
14.
Sbragaglia
,
M.
, and
Prosperetti
,
A.
,
2007
, “
Effective Velocity Boundary Condition at a Mixed Slip Surface
,”
J. Fluid Mech.
,
578
, pp.
435
451
.10.1017/S0022112007005149
15.
Davis
,
A. M. J.
, and
Lauga
,
E.
,
2009
, “
Geometric Transition in Friction for Flow Over a Bubble Mattress
,”
Phys. Fluids
,
21
, p.
011701
.10.1063/1.3067833
16.
Ng
,
C.-O.
, and
Wang
,
C. Y.
,
2009
, “
Stokes Shear Flow Over a Grating: Implications for Superhydrophobic Slip
,”
Phys. Fluids
,
21
, p.
013602
.10.1063/1.3068384
17.
Feuillebois
,
F.
,
Bazant
,
M.
, and
Vinogradova
,
O. I.
,
2009
, “
Effective Slip Over Superhydrophobic Surfaces in Thin Channels
,”
Phys. Rev. Lett.
,
102
, p.
026001
.10.1103/PhysRevLett.102.026001
18.
Ng
,
C.-O.
, and
Wang
,
C. Y.
,
2009
, “
Apparent Slip Arising From Stokes Shear Flow Over a Bidimensional Patterned Surface
,”
Microfluid. Nanofluid.
,
5
, pp.
1
11
.10.1007/s10404-009-0466-x
19.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2009
, “
Pressure Drop in Laminar Developing Flow in Non-Circular Ducts: A Scaling and Modeling Approach
,”
ASME J. Fluids Eng.
,
131
, p.
111105
.10.1115/1.4000377
20.
Muzychka
,
Y. S.
,
Duan
,
Z. P.
, and
Yovanovich
,
M. M.
,
2011
, “
Fluid Friction and Heat Transfer in Microchannels
,”
Handbook of Microfluidics and Nanofluidics
,
S.
Chagraborty
and
S.
Mitra
, eds.,
CRC
,
Boca Raton, FL
.
21.
Sparrow
,
E. M.
,
Lundgren
,
T. S.
, and
Lin
,
S. H.
,
1962
, “
Slip Flow in the Entrance Region of a Parallel Plate Channel
,”
Proceedings of the Heat Transfer and Fluid Mechanics Institute
, Stanford University, pp.
223
238
.
22.
Quarmby
,
A.
,
1965
, “
Slip Flow in the Hydrodynamic Entrance Region of a Tube and Parallel Plate Channel
,”
Appl. Sci. Rev.
,
15
, pp.
411
428
.10.1007/BF00411575
23.
Quarmby
,
A.
,
1966
, “
Slip Flow in an Annulus
,”
Appl. Sci. Rev.
,
16
, pp.
301
314
.10.1007/BF00384074
24.
Targ
,
S. M.
,
1951
,
Osnovnye Zadachi Teorii Laminarykh Techenyi
,
GITTL
,
Moscow
.
25.
Quarmby
,
A.
,
1968
, “
A Finite Difference Analysis of Developing Slip Flow
,”
Appl. Sci. Rev.
,
19
, pp.
18
33
.10.1007/BF00383909
26.
Barber
,
R. W.
, and
Emerson
,
D. R.
,
2001
, “
A Numerical Investigation of Low Reynolds Number Gaseous Slip Flow at the Entrance of Circular and Parallel Plate Microchannels
,”
ECCOMAS Computational Fluid Dynamics Conference
,
Swansea, Wales, UK
, September 4–7.
27.
Barber
,
R. W.
, and
Emerson
,
D. R.
,
2002
, “
The Influence of Knudsen Number on the Hydrodynamic Development Length Within Parallel Plate Microchannels
,”
Advances in Fluid Mechanics IV
,
E. R.
Rahman
,
R.
Verhoeven
, and
C.
Brebbia
, eds.,
WIT Press
,
Southhampton, UK
, pp.
207
216
.
28.
Renksizbulut
,
M.
,
Niazmand
,
H.
, and
Tercan
,
G.
,
2006
, “
Slip Flow and Heat Transfer in Rectangular Micro-channels With Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
45
, pp.
870
881
.10.1016/j.ijthermalsci.2005.12.008
29.
Niazmand
,
H.
,
Renksizbulut
,
M.
, and
Saeedi
,
E.
,
2009
, “
Developing Slip Flow and Heat Transfer in Trapezoidal Micro-Channels
,”
Int. J. Heat Mass Transfer
,
51
, pp.
6126
6135
.10.1016/j.ijheatmasstransfer.2008.04.007
30.
Zade
,
A. Q.
,
Renksizbulut
,
M.
, and
Friedman
,
J.
,
2011
, “
Heat Transfer Characteristics of Developing Gaseous Slip Flow in Rectangular Microchannels With Variable Physical Properties
,”
Int. J. Heat Fluid Flow
,
32
, pp.
117
127
.10.1016/j.ijheatfluidflow.2010.10.004
31.
Madawa Hettiarachchi
,
H. D.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Minkowicz
,
W. J.
,
2008
, “
Three Dimensional Laminar Slip Flow and Heat Transfer in a Rectangular Microchannel With Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5088
5096
.10.1016/j.ijheatmasstransfer.2008.02.049
32.
Duan
,
Z. P.
, and
Muzychka
,
Y. S.
,
2007
, “
Models for Gaseous Slip Flow in Non-Circular Microchannels
,
Proceedings of ASME-JSME Thermal Engineering Summer Heat Transfer Conference
,
Vancouver, Canada
, July 8–12.
33.
Duan
,
Z. P.
, and
Muzychka
,
Y. S.
,
2010
, “
Slip Flow in the Hydrodynamic Entrance Region of Circular and Non-Circular Microchannels
,”
ASME J. Fluids Eng.
,
132
(
1
), p.
011201
.10.1115/1.4000692
34.
Chakraborty
,
S.
, and
Anand
,
K. D.
,
2008
, “
Implications of Hydrophobic Interactions and Consequent Apparent Slip Phenomena on the Entrance Region Transport of Liquids Through Microchannels
,”
Phys. Fluids
,
20
, p.
043602
.10.1063/1.2904988
35.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
.
36.
Philip
,
J. R.
,
1972
, “
Flows Satisfying Mixed No-Slip and No-Shear Conditions
,”
Z. Angew. Math. Phys.
,
23
, pp.
353
370
.10.1007/BF01595477
37.
Philip
,
J. R.
,
1972
, “
Integral Properties of Flows Satisfying Mixed No-Slip and No-shear Conditions
,”
Z. Angew. Math. Phys.
,
23
, pp.
960
968
.10.1007/BF01596223
38.
Teo
,
C. J.
, and
Khoo
,
B. C.
,
2009
, “
Analysis of Stokes Flow in Microchannels With Superhydrophobic Surfaces Containing a Periodic Array of Micro-grooves
,”
Microfluid. Nanofluid.
,
7
, pp.
353
382
.10.1007/s10404-008-0387-0
39.
Sbragaglia
,
M.
, and
Prosperetti
,
A.
,
2007
, “
A Note on the Effective Slip Properties for Microchannel Flows With Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
19
, p.
043603
.10.1063/1.2716438
40.
Teo
,
C. J.
, and
Khoo
,
B. C.
,
2010
, “
Flow Past Superhydrophobic Surfaces Containing Longitudinal Grooves: Effects of Interface Curvature
,”
Microfluid. Nanofluid.
,
6
, pp.
499
511
.10.1007/s10404-010-0566-7
41.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.10.1021/ie50320a024
42.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.10.1039/tf9444000546
43.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1960
,
Transport Phenomena
,
Wiley
,
New York
.
44.
Ansys Inc.
,
2009
,
Fluent Users Guide
, Version 6.3 edition,
Ansys Inc., Canonsburg, PA.
45.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere, Washington, DC
.
46.
Gamrat
,
G.
,
Favre-Marinet
,
M.
, and
Asendrych
,
D.
,
2005
, “
Conduction and Entrance Effects on Laminar Liquid Flow and Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2943
2954
.10.1016/j.ijheatmasstransfer.2004.10.006
47.
Darbandi
,
M.
, and
Vakilipour
,
M.
,
2009
, “
Solution of Thermally Developing Zone in Short Micro-Nanoscale Channels
,”
ASME J. Heat Transfer
,
131
(
4
), p.
044501
.10.1115/1.3072908
48.
Palle
,
S.
, and
Aliabadi.
S.
,
2012
, “
Slip Flow and Heat Transfer in Rectangular and Circular Microchannels Using Hybrid FE/FV Method
,”
Int. J. Numer. Methods Eng.
,
89
, pp.
53
70
.10.1002/nme.3231
49.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1972
, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
,
18
, pp.
1121
1128
.10.1002/aic.690180606
You do not currently have access to this content.