The dynamic motion of floating wind turbines is studied using numerical simulations. The full three-dimensional Navier–Stokes equations are solved on a regular structured grid using a level set method for the free surface and an immersed boundary method for the turbine platform. The tethers, the tower, the nacelle, and the rotor weight are included using reduced-order dynamic models, resulting in an efficient numerical approach that can handle nearly all the nonlinear hydrodynamic forces on the platform, while imposing no limitation on the platform motion. Wind speed is assumed constant, and rotor gyroscopic effects are accounted for. Other aerodynamic loadings and aeroelastic effects are not considered. Several tests, including comparison with other numerical, experimental, and grid study tests, have been done to validate and verify the numerical approach. The response of a tension leg platform (TLP) to different amplitude waves is examined, and for large waves, a nonlinear trend is seen. The nonlinearity limits the motion and shows that the linear assumption will lead to overprediction of the TLP response. Studying the flow field behind the TLP for moderate amplitude waves shows vortices during the transient response of the platform but not at the steady state, probably due to the small Keulegan–Carpenter number. The effects of changing the platform shape are considered, and finally, the nonlinear response of the platform to a large amplitude wave leading to slacking of the tethers is simulated.

References

1.
Heronemus
,
W. E.
,
1972
, “
Power From Offshore Winds
,”
Proceedings of the 8th Annual Conference and Exposition on Applications of Marine Technology to Human Needs
,
Washington, DC
, pp.
435
466
.
2.
Tong
,
K.
,
1998
, “
Technical and Economical Aspects of a Floating Offshore Windfarm
,”
J. Wind Eng. Ind. Aerodyn.
,
74
, pp.
399
410
.10.1016/S0167-6105(98)00036-1
3.
Henderson
,
A. R.
, and
Patel
,
M. H.
,
2003
, “
On the Modeling of a Floating Offshore Wind Turbine
,”
Wind Eng.
,
6
(
1
), pp.
53
86
.10.1002/we.83
4.
Ushiyama
,
I.
,
Seki
,
K.
, and
Miura
,
H.
,
2004
, “
A Feasibility Study for Floating Offshore Windfarms in Japanese Waters
,”
Wind Eng.
,
28
(
4
), pp.
383
397
.10.1260/0309524042886397
5.
Butterfield
,
S.
,
Musial
,
W.
,
Jonkman
,
J.
, and
Sclavounos
,
P.
,
2005
, “
Engineering Challenges for Floating Offshore Wind Turbines
,”
Copenhagen Offshore Wind Conference
,
Copenhagen, Denmark
.
6.
Musial
,
W.
,
Butterfield
,
S.
, and
Boone
,
A.
,
2004
, “
Feasibility of Floating Platform Systems for Wind Turbines
,”
23rd ASME Wind Energy Symposium
,
Reno, NV
.
7.
Sclavounos
,
P.
,
2009
, “
Floating Offshore Wind Turbines
,”
Mar. Technol. Soc. J.
,
42
(
2
), pp.
39
43
.10.4031/002533208786829151
8.
Utsunomiya
,
T.
,
Nishida
,
E.
, and
Sato
,
I.
,
2009
, “
Wave Response Experiment on SPAR-Type Floating Bodies for Offshore Wind Turbine
,”
Proceedings of the Nineteenth International Offshore and Polar Engineering Conference
,
Osaka, Japan
.
9.
Phuc
,
P. V.
, and
Ishihara
,
T.
,
2007
, “
A Study on the Dynamic Response of a Semi-Submersible Floating Offshore Wind Turbine System Part 2: Numerical Simulation
,”
Twelfth International Conference on Wind Engineering
,
Cairns, Australia
.
10.
Karimirad
,
M.
,
Meissonnier
,
Q.
,
Gao
,
Z.
, and
Moan
,
T.
,
2011
, “
Hydroelastic Code-To-Code Comparison for a Tension Leg Spar-Type Floating Wind Turbine
,”
Mar. Struct.
,
24
(
4
), pp.
412
435
.10.1016/j.marstruc.2011.05.006
11.
Larsen
,
T. J.
,
2009
,
HAWC2. The User's Manual, version 3-8
,
Riso DTU National Laboratory for Sustainable Energy
,
Roskilde, Denmark
.
12.
Hansen
,
M. O.
,
Aas Jakobsen
,
K.
,
Holmas
,
T.
, and
Amdahl
,
J.
,
2009
, “
VPONE–a New FEM Based Servo Hydro-and Aeroelastic Code for Wind Turbines
,”
Proceedings of European Offshore Wind
,
Stockholm, Sweden
.
13.
Karimirad
,
M.
, and
Moan
,
T.
,
2011
, “
Extreme Dynamic Structural Response Analysis of Catenary Moored Spar Wind Turbine in Harsh Environmental Conditions
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
, p.
041103
.10.1115/1.4003393
14.
Sclavounos
,
P. D.
,
Lee
,
S.
,
DiPietro
,
J.
,
Potenza
,
G.
,
Caramuscio
,
P.
, and
De Michele
,
G.
,
2010
, “
Floating Offshore Wind Turbine: Tension Leg Platform and Taught Leg Buoy Concepts Supporting 3-5 Mw Wind Turbines
,”
European Wind Energy Conference and Exhibition
,
Warsaw, Poland
.
15.
Shim
,
S.
, and
Kim
,
M. H.
,
2008
, “
Rotor-Floater-Tether Coupled Dynamic Analysis of Offshore Floating Wind Turbines
,”
Proceedings of the Eighteenth International Offshore and Polar Engineering Conference
,
Vancouver, BC
.
16.
Jonkman
,
J. M.
,
2009
, “
Dynamics of Offshore Floating Wind Turbines. Model Development and Verification
,”
Wind Eng.
,
12
(
5
), pp.
459
492
.10.1002/we.347
17.
Roddier
,
D.
,
Cermelli
,
C.
,
Aubault
,
A.
, and
Weinstein
,
A.
,
2010
, “
WindFloat: A Floating Foundation for Offshore Wind Turbine
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033104
.10.1063/1.3435339
18.
Nielsen
,
F. G.
,
Hanson
,
T. D.
, and
Skaare
,
B.
,
2006
, “
Integrated Dynamic Analysis of Floating Offshore Wind Turbines
,”
25th International Conference on Offshore Mechanics and Arctic Engineering
,
Hamburg, Germany
.
19.
Lee
,
C. H.
, and
Newman
,
J. N.
,
2006
,
WAMIT User Manual, versions 6.3, 6.3PC, 6.3S, 6.3S PC.
,
WAMIT, Inc.
,
Chestnut Hill, MA
.
20.
Jonkman
,
J. M.
, and
Sclavonous
,
P. D.
,
2006
, “
Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines
,”
Proceedings of the 44th AIAA Aerospace Sciences Meeting
,
Reno, NV
.
21.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
,
2007
, “
Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation
,”
Wind Power Conference and Exhibition
,
Los Angeles, CA
.
22.
Karimirad
,
M.
,
2010
, “
Dynamic Response of Floating Wind Turbines
,”
Sci. Iran.
,
17
(
2B
), pp.
146
156
.
23.
Stewart
,
G. M.
,
Lackner
,
M. A.
,
Robertson
,
A. N.
,
Jonkman
,
J. M.
, and
Goupee
,
A. J.
,
2006
, “
Calibration and Validation of a FAST Floating Wind Turbine Model of the DeepCwind Scaled Tension-Leg Platform
,”
22nd International Offshore and Polar Engineering Conference
,
Rhodes, Greece
.
24.
Yabe
,
T.
,
Xiao
,
F.
, and
Utsumi
,
T.
,
2001
, “
The Constrained Interpolation Profile Method for Multiphase Analysis
,”
J. Comput. Phys.
,
169
(
2
), pp.
556
593
.10.1006/jcph.2000.6625
25.
Patankar
,
N. A.
, and
Sharma
,
N.
,
2005
, “
A Fast Projection Scheme for the Direct Numerical Simulation Of Rigid Particulate Flows
,”
Commun. Numer. Methods Eng.
,
21
(
8
), pp.
419
432
.10.1002/cnm.756
26.
Nematbakhsh
,
A.
,
Olinger
,
D. J.
, and
Tryggvason
,
G.
,
2011
, “
A Computational Simulation of the Motion of Floating Wind Turbine Platforms
,”
WIT Trans. Built Environ.
,
115
, pp.
181
191
.10.2495/FSI11
27.
Nematbakhsh
,
A.
,
Olinger
,
D. J.
, and
Tryggvason
,
G.
,
2012
, “
Development and Validation of a Computational Model for Floating Wind Turbine Platforms
,”
50th AIAA Aerospace Sciences Meeting
,
Nashville, TN
, AIAA Paper No. 2012-0373.
28.
Nematbakhsh
,
A.
,
Olinger
,
D. J.
, and
Tryggvason
,
G.
,
2012
, “
A Nonlinear Computational Model for Floating Wind Turbines
,”
5th Symposium on Transport Phenomena in Energy Conversion From Clean and Sustainable Resources
,
Rio Grande, PR
.
29.
Olinger
,
D. J.
,
DeStefano
,
E.
,
Murphy
,
E.
,
Naqvi
,
S.
, and
Tryggvason
,
G.
,
2012
, “
Scale-Model Experiments on Floating Wind Turbine Platforms
,”
50th AIAA Aerospace Sciences Meeting
,
Nashville, TN
, AIAA Paper No. 2012-0375.
30.
Jonkman
,
J. S.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” Technical Report No. NREL/TP-500-38060.
31.
Sorensen
,
R. M.
,
2006
,
Basic Coastal Engineering
,
Springer
,
New York
.
32.
Yang
,
J.
, and
Stern
,
F.
,
2009
, “
Sharp Interface Immersed-Boundary/Level-Set Method for Wave–Body Interactions
,”
J. Comput. Phys.
,
228
(
17
), pp.
6590
6616
.10.1016/j.jcp.2009.05.047
33.
Bearman
,
P. W.
,
Downie
,
M. J.
,
Graham
,
J. M.
, and
Obasaju
,
E. D.
,
1985
, “Forces on Cylinders in Viscous Oscillatory Flow at Low Keulegan-Carpenter Numbers,”
J. Fluids Mech.
,
154
(
1
), pp.
337
356
.10.1017/S0022112085001562
34.
Falgout
,
R.
, Cleary, A., Jones, J., Chow, E., Henson, V., Baldwin, C., Brown, P., Vassilevski, P., and Yang, U. M., “Hypre User's Manual, Version 2.7,” Center for Applied Scientific Computing (CASC), Lawrence Livermore National Laboratory, Livermore, CA.
35.
Osher
,
S. J.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
, pp.
12
49
.10.1016/0021-9991(88)90002-2
36.
Fedkiw
,
R. P.
,
Aslam
,
T.
,
Merriman
,
B.
, and
Osher
,
S.
,
1999
, “
A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (The Ghost Fluid Method)
,”
J. Comput. Phys.
,
152
(
2
), pp.
457
492
.10.1006/jcph.1999.6236
37.
Sussman
,
M.
, and
Fatemi
,
E.
,
1999
, “
An Efficient Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow
,”
SIAM J. Sci. Comput.
,
20
(
4
), pp.
1165
1191
.10.1137/S1064827596298245
38.
Ogayar
,
C. J.
,
Segura
,
R. J.
, and
Feito
,
F. R.
,
2005
, “
Points in Solid Strategies
,”
Comput. Graphics
,
29
, pp.
616
624
.10.1016/j.cag.2005.05.012
39.
Jensen
,
C.
,
2011
, “
Numerical Simulation of Gyroscopic Effects in Ansys
,” M.S. thesis, Aalborg University, Aalborg, Denmark.
40.
Arnold
,
R. N.
, and
Maunder
,
L.
,
2006
,
GyroDynamics and Its Engineering Application
,
Academic
,
New York
, pp.
83
93
.
41.
Pao
,
L. Y.
, and
Johnson
,
K. E.
,
2009
, “
A Tutorial on the Dynamics and Control of Wind Turbines and Wind Farms
,”
American Control Conference
,
St. Louis, MO
.
42.
Wu
,
G. X.
,
Taylor
,
R. E.
, and
Greaves
,
D. M.
,
2001
, “
The Effect of Viscosity on the Transient Free-Surface Waves in a Two-Dimensional Tank
,”
J. Eng. Math.
,
40
, pp.
77
90
.10.1023/A:1017558826258
43.
Lai
,
M.
, and
Peskin
,
C. S.
,
2000
, “
An Immersed Boundary Method With Formal Second-Order Accuracy and Reduced Numerical Viscosity
,”
J. Comput. Phys.
,
160
(
2
), pp.
705
719
.10.1006/jcph.2000.6483
44.
He
,
X.
, and
Doolen
,
D.
,
1997
, “
Lattice Boltzmann Method on a Curvilinear Coordinate System: Vortex Shedding Behind a Circular Cylinder
,”
Phys. Rev. E
,
56
(
1
), pp.
434
440
.10.1103/PhysRevE.56.434
45.
Henderson
,
R. D.
,
1995
, “
Details of the Drag Curve Near the Onset of Vortex Shedding
,”
Phys. Fluids
,
7
, pp.
2102
2104
.10.1063/1.868459
46.
Williamson
,
C.
,
1988
, “
The Existence of Two Stages in the Transition to Three-Dimensionality of a Cylinder Wake
,”
Phys. Fluids
,
31
, pp.
3165
3168
.10.1063/1.866925
47.
Hammache
,
M.
, and
Gharib
,
M.
,
1989
, “
A Novel Method to Promote Parallel Vortex Shedding in the Wake of Circular Cylinders
,”
Phys. Fluids
,
1
(
10
), pp.
1611
1614
.10.1063/1.857306
48.
Jung
,
K. H.
,
Chang
,
K. A.
, and
Jo
,
H. J.
,
2006
, “
Viscous Effect on the Roll Motion of a Rectangular Structure
,”
J. Eng. Mech.
,
132
(
2
), pp.
190
200
.10.1061/(ASCE)0733-9399(2006)132:2(190)
49.
Koo
,
W.
, and
Kim
,
H.
,
2004
, “
Freely Floating-Body Simulation by a 2D Fully Nonlinear Numerical Wave Tank
,”
J. Ocean Eng.
,
31
(
16
), pp.
2011
2046
.10.1016/j.oceaneng.2004.05.003
50.
Wayman
,
E. N.
,
Sclavounos
,
P. D.
,
Jonkman
,
J.
, and
Musial
,
W.
,
2006
, “
Coupled Dynamic Modeling of Floating Wind Turbine Systems
,”
Offshore Technology Conference
,
Houston, TX
.
51.
Sarpkaya
,
T.
,
1986
, “
Force on a Circular Cylinder in Viscous Oscillatory Flow at Low Keulegan-Carpenter Numbers
,”
J. Fluid Mech.
,
165
, pp.
61
71
.10.1017/S0022112086002999
52.
Guilmineau
,
E.
, and
Queutey
,
P.
,
2002
, “
A Numerical Simulation of Vortex Shedding From and Oscillating Circular Cylinder
,”
J. Fluids Struct.
,
16
(
6
), pp.
773
794
.10.1006/jfls.2002.0449
53.
Yu
,
G.
,
Avital
,
E. J.
, and
Williams
,
J.
,
2008
, “
Large Eddy Simulation of Flow Past Free Surface Piercing Circular Cylinders
,”
ASME J. Fluids Eng.
,
130
(
10
), p.
101304
.10.1115/1.2969462
54.
Bea
,
R.
,
Xu
,
T.
,
Stear
,
J.
, and
Ramos
,
R.
,
1999
, “
Wave Forces on Decks of Offshore Platforms
,”
J. Waterway, Port, Coastal, Ocean Eng.
,
125
(
3
), pp.
136
144
.10.1061/(ASCE)0733-950X(1999)125:3(136)
You do not currently have access to this content.