This paper contains an extensive analysis of the flow in microholes based on an experimental investigation. Experiments of the gas flow past a perforated plate with microholes (110μm) were carried out. A wide range of pressure differences between the inlet and the outlet were investigated for that purpose. Two distinguishable flow regimes were obtained: the laminar flow with the slip effects and the turbulence transition regime for a very low Reynolds number. The results are in good agreement with the theory, simulations, experiments for large scale perforated plates, and compressible flows in microtubes. The relation between the mass flow rate and the Knudsen, Reynolds, and Mach numbers for the laminar and transitional regime was obtained. It is a quadratic function of the Reynolds and Knudsen numbers (ReKn) based on the hole's diameter. The value of the first order tangential momentum accommodation coefficient was estimated. It shows a strong relation to the inlet Knudsen number.

References

1.
Budoff
,
M.
, and
Zorumski
,
W.
,
1971
, “
Flow Resistance of Perforated Plates in Tangential Flow
,” NASA Report No. TM X-2361.
2.
Liu
,
R.
, and
Ting
,
D.
,
2007
, “
Turbulent Flow Downstream of a Perforated Plate: Sharp-Edged Orifice Versus Finite-Thickness Holes
,”
ASME J. Fluids Eng.
,
129
, pp.
1164
1171
.10.1115/1.2754314
3.
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Incompressible and Compressible Flows Through Rectangular Microorifices Entrenched in Silicon Microchannels
,”
J. Microelectromech. Syst.
,
14
(
5
), pp.
1000
1012
.10.1109/JMEMS.2005.851825
4.
van Rijn
,
C.
,
van der Wekken
,
M.
,
Hijdam
,
W.
, and
Elwenpoek
,
M.
,
1994
, “
Deflection and Maximum Load of Microfiltration Membrane Sieves Made With Silicon Micromachining
,”
J. Microelectromech. Syst.
,
6
, pp.
48
54
.10.1109/84.557530
5.
Yang
,
J.
,
Ho
,
C.
,
Yang
,
X.
, and
Tai
,
Y.
,
2001
, “
Micromachined Particle Filter With Low Power Dissipation
,”
ASME J. Fluids Eng.
,
123
, pp.
899
908
.10.1115/1.1399285
6.
Zierep
,
J.
,
Bohning
,
R.
, and
Doerffer
,
P.
,
2003
, “
Experimental and Analytical Analysis of Perforated Plate Aerodynamics
,”
J. Therm. Sci.
,
12
(
3
), pp.
193
197
.10.1007/s11630-003-0066-0
7.
Zhang
,
T.
,
Jia
,
L.
,
Li
,
C.
,
Yang
,
L.
, and
Jaluria
,
Y.
,
2011
, “
Experimental Study on Single-Phase Gas Flow in Microtubes
,”
ASME J. Heat Transfer
,
133
, p.
111703
.10.1115/1.4004391
8.
Lahjomri
,
J.
, and
Obarra
,
A.
,
2013
, “
Hydrodynamic and Thermal Characteristics of Laminar Slip Flow Over a Horizontal Isothermal Flat Plate
,”
ASME J. Heat Transfer
,
135
, p.
021704
.10.1115/1.4007412
9.
Barashkin
,
S.
,
Porodnov
,
B.
, and
Syromyatnikov
,
S.
,
1989
.,“
Density Distribution in Rarefied Gas Flow Behind a Perforated Plate
,”
Fluid Dyn.
,
24
(
3
), pp.
482
484
.10.1007/BF01051596
10.
Edwards
,
D.
,
Shapiro
,
M.
,
Bar-Yoseph,
P.
, and Shapira,
M.
,
1990
, “
The Influence of Reynolds Number Upon the Apparent Permeability of Spatially Periodic Arrays of Cylinders
,”
Phys. Fluids A
,
2
(
1
), pp.
45
55
.10.1063/1.857691
11.
Pozrikidis
,
C.
,
2010
, “
Slip Velocity Over a Perforated or Patchy Surface
,”
J. Fluid Mech.
,
643
, pp.
471
477
.10.1017/S0022112009992667
12.
Tio
,
K.
, and
Sadhal
,
S.
,
1994
, “
Boundary Conditions for Stokes Flows Near a Porous Membrane
,”
Appl. Sci. Res.
,
52
, pp.
1
20
.10.1007/BF00849164
13.
Duan
,
Z.
,
2011
, “
Incompressible Criterion and Pressure Drop for Gaseous Slip Flow in Circular and Noncircular Microchannels
,”
ASME J. Fluids Eng.
,
133
, p.
074501
.10.1115/1.4004298
14.
Maa
,
D.
,
1975
, “
Potentials of Micro Perforated Absorbers
,”
J. Acoust. Soc. Am.
,
104
(
5
), pp.
2866
2868
.
15.
Babak
,
V.
,
Babak
,
T.
,
Kholpanov
,
L.
, and
Malyusov
,
V.
,
1986
, “
A Procedure for Calculating Matrix Heat Exchangers Formed From Perforated Plates
,”
J. Eng. Phys.
,
50
(
3
), pp.
330
335
.10.1007/BF00870129
16.
Bunker
,
R.
,
2007
, “
Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,”
ASME J. Turbomach.
,
129
(
2
), pp.
193
201
.10.1115/1.2464142
17.
Gau
,
C.
, and
Huang
,
W.
,
1990
, “
Effect of Weak Swirling Flow on Film Cooling Performance
,”
ASME J. Turbomach.
,
112
(
4
), pp.
786
791
.10.1115/1.2927722
18.
Howarth
,
L.
,
1953
,
Modern Developments in Fluid Dynamics: High Speed Flow
, Vol.
2
,
Clarendon
,
Oxford, UK
.
19.
Bird
,
G.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Oxford University Press
,
New York
.
20.
White
,
F.
,
1998
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
21.
Beskok
,
A.
, and
Karniadakis
,
G.
,
1999
, “
A Model for Flows in Channels, Pipes and Ducts at Micro and Nano Scale
,”
Microscale Thermophys. Eng.
,
3
, pp.
43
77
.10.1080/108939599199864
22.
Hagen
,
G.
,
1839
, “
Uber den bewegung des wassers in engen cylindrischen rohren
,”
Ann. Phys. Chem.
,
46
, pp.
423
442
.
23.
Eckhardt
,
B.
,
2008
, “
Turbulence Transition in Pipe Flow: Some Open Questions
,”
Nonlinearity
,
21
, pp.
1
11
.10.1088/0951-7715/21/1/T01
24.
Kohl
,
M.
,
Abdel-Khalik
,
S.
,
Jeter
,
S.
, and
Sadowski
,
D.
,
2005
, “
A Microfluidic Experimental Platform With Internal Pressure Measurements
,”
Sens. Actuators
, A,
118
(
2
), pp.
212
221
.10.1016/j.sna.2004.07.014
25.
Gan
,
G.
, and
Riffat
,
S.
,
1997
, “
Pressure Loss Characteristics of Orifice and Perforated Plates
,”
Exp. Therm. Fluid Sci.
,
14
(
2
), pp.
160
165
.10.1016/S0894-1777(96)00041-6
26.
Cuhadaroglu
,
B.
,
Akansu
,
Y.
, and
Turhal
,
A.
,
2007
, “
An Experimental Study on the Effects of Uniform Injection Through One Perforated Surface of a Square Cylinder on Some Aerodynamic Parameters
,”
Exp. Therm. Fluid Sci.
,
31
, pp.
909
915
.10.1016/j.expthermflusci.2006.09.006
27.
Doerffer
,
P.
, and
Bohning
,
R.
,
2000
, “
Modelling of Perforated Plate Aerodynamics Performance
,”
Aerosp. Sci. Technol.
,
4
, pp.
525
534
.10.1016/S1270-9638(00)01063-4
28.
Dagan
,
Z.
,
Weinbaum
,
S.
, and
Pfeffer
,
R.
,
1982
, “
An Infinite Solution for the Creeping Motion Through an Orifice of Finite Length
,”
J. Fluid Mech.
,
115
, pp.
505
523
.10.1017/S0022112082000883
29.
Ahmed
,
I.
, and
Beskok
,
A.
,
2002
, “
Rarefaction, Compressibility, and Viscous Heating in Gas Micro Filters
,”
J. Thermophys. Heat Transfer
,
16
(
2
), pp.
161
170
.10.2514/2.6671
30.
Roy
,
S.
,
Raju
,
R.
,
Cruden
,
H. C. B.
, and
Meyyappan
,
M.
,
2003
, “
Modeling Gas Flow Through Microchannels and Nanopores
,”
J. Appl. Phys.
,
93
(
8
), pp.
4870
4879
.10.1063/1.1559936
31.
Colin
,
S.
,
2012
, “
Gas Microflows in the Slip Flow Regime: A Critical Review on Convective Heat Transfer
,”
ASME J. Heat Transfer
,
134
, p.
020908
.10.1115/1.4005063
32.
Tamayol
,
A.
, and
Hooman
,
K.
,
2011
, “
Slip-Flow in Microchannels of Non-Circular Cross Sections
,”
ASME J Fluids Eng.
,
133
, p.
091202
.10.1115/1.4004591
33.
Yang
,
J.
,
Ye
,
J.
,
Zheng
,
J.
,
Wong
,
I.
,
Lam
,
C.
,
Xu
,
P.
,
Chen
,
R.
, and
Zhu
,
Z.
,
2010
, “
Using Direct Simulation Monte Carlo With Improved Boundary Conditions for Heat and Mass Transfer in Microchannels
,”
ASME J. Heat Transfer
,
132
, p.
041008
.10.1115/1.4000880
34.
Wang
,
M.
, and
Li
,
Z.
,
2004
, “
Simulations for Gas Flows in Microgeometries Using the Direct Simulation Monte Carlo Method
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
975
985
.10.1016/j.ijheatfluidflow.2004.02.024
35.
Garcia
,
R.
, and
Siewert
,
C.
,
2010
, “
Viscous-Slip, Thermal-Slip, and Temperature-Jump Coefficients Based on the Linearized Boltzmann Equation (and Five Kinetic Models) With the Cercignani–Lampis Boundary Condition
”.
Eur. J. Mech. B/Fluids
,
29
, pp.
181
191
.10.1016/j.euromechflu.2010.01.005
36.
Jain
,
V.
, and
Lin
,
C.
,
2006
, “
Numerical Modeling of Three-Dimensional Compressible Gas Flow in Microchannels
,”
J. Micromech. Microeng.
,
16
, pp.
292
302
.10.1088/0960-1317/16/2/014
37.
Szalmas
,
L.
, and
Valougeorgis
,
D.
,
2002
, “
Rarefied Gas Flow of Binary Mixtures Through Long Channels With Triangular and Trapezoidal Cross Sections
,”
Microfluid. Nanofluid.
,
9
(
2
), pp.
471
487
.10.1007/s10404-010-0564-9
38.
Albertoni
,
S.
,
Cercignani
,
C.
, and
Gotusso
,
L.
,
1963
, “
Numerical Evaluation of the Slip Coeffcient
,”
Phys. Fluids
,
6
, pp.
993
996
.10.1063/1.1706857
39.
Shen
,
S.
,
Chen
,
G.
,
Crone
,
R.
, and
Anaya-Dufresne
,
M.
,
2007
, “
A Kinetic-Theory Based First Order Slip Boundary Condition for Gas Flow
,”
Phys Fluids
,
19
, p.
086101
.10.1063/1.2754373
40.
Arkilic
,
E.
,
Schmidt
,
M.
, and
Breuer
,
K.
,
1997
, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
167
178
.10.1109/84.585795
41.
Hsieh
,
S.
,
Tsai
,
H.
,
Lin
,
C.
,
Huang
,
C.
, and
Chien
,
C.
,
2004
, “
Gas Flow in a Long Microchannel
,”
Int. J. Heat Mass Transfer
,
47
(
17
), pp.
3877
3887
.10.1016/j.ijheatmasstransfer.2004.03.027
42.
Yang
,
Z.
, and
Garimella
,
S.
,
2009
, “
Rarefied Gas Flow in Microtubes at Different Inlet-Outlet Pressure Ratios
,”
Phys Fluids
,
21
, p.
052005
.10.1063/1.3139310
43.
van Male
,
P.
,
de Croon
,
M.
,
Tiggelaar
,
R.
,
van den Berg
,
A.
, and
Schouten
,
J. C.
,
2004
, “
Heat and Mass Transfer in a Square Microchannel With Asymmetric Heating
,”
Int. J. Heat Mass Transfer
,
47
, pp.
87
99
.10.1016/S0017-9310(03)00401-0
44.
Yao
,
Z.
,
He
,
F.
,
Ding
,
Y.
,
Shen
,
M.
, and
Wang
,
X.
,
2004
, “
Low-Speed Gas Flow Subchoking Phenomenon in a Long-Constant-Area Microchannel
,”
AIAA J.
,
42
(
8
), pp.
1517
1521
.10.2514/1.4336
45.
Ewart
,
T.
,
Perrier
,
P.
,
Graur
,
I.
, and
Meolans
,
J.
,
2007
, “
Mass Flow Rate Measurements in a Microchannel, From Hydrodynamic to Near Free Molecular Regimes
,”
J. Fluid Mech.
,
584
, pp.
337
356
.10.1017/S0022112007006374
46.
Pitakarnnop
,
J.
,
Varoutis
,
S.
,
Valougeorgis
,
D.
,
Geoffroy
,
S.
,
Baldas
,
L.
, and
Colin
,
S.
,
2010
, “
A Novel Experimental Setup for Gas Microflows
,”
Microfluid. Nanofluid.
,
8
(
1
), pp.
57
72
.10.1007/s10404-009-0447-0
47.
Rebrov
,
A.
,
Morozov
,
A.
,
Plotnikov
,
M.
,
Yu
,
Z.
,
Timoshenko
,
N.
, and
Maltsev
,
V.
,
2003
, “
Determination of Accommodation Coefficients of Translational and Internal Energy Using a Thin Wire in a Free-Molecular Flow
,”
Rev. Sci. Instrum.
,
74
(
2
), pp.
1103
1106
.10.1063/1.1533098
48.
Sone
,
Y.
,
2000
, “
Flows Induced by Temperature Fields in a Rarefied Gas and Their Ghost Effect on the Behavior of a Gas in the Continuum Limit
,”
Ann. Rev. Fluid Mech.
,
32
, pp.
779
811
.10.1146/annurev.fluid.32.1.779
49.
Venerus
,
D.
, and
Bugajsky
,
D.
,
2010
, “
Compressible Laminar Flow in a Channel
,”
Phys Fluids
,
22
, p.
046101
.10.1063/1.3371719
50.
Ewart
,
T.
,
Perrier
,
P.
,
Graur
,
I.
, and
Meolans
,
J.
,
2006
, “
Mass Flow Rate Measurements in Gas Micro Flows
,”
Exp. Fluids
,
41
, pp.
487
498
.10.1007/s00348-006-0176-z
51.
Lewandowski
,
T.
,
Jebauer
,
S.
,
Czerwinska
,
J.
, and
Doerffer
,
P.
,
2009
, “
Entrance Effects in Microchannel Gas Flow
,”
J. Therm. Sci.
,
18
(
4
), pp.
345
352
.10.1007/s11630-009-0345-5
52.
Maxwell
,
J.
,
1879
, “
On Stresses in Rarified Gases Arising From Inequalities of Temperature
,”
Philos. Trans. R. Soc. London
,
170
, pp.
231
256
.10.1098/rstl.1879.0067
53.
Smoluchowski
,
M.
,
1898
, “
Uber den temperatursprung bei warmeleitung in gasen
,”
Akad. Wiss. Wien
,
107
, pp.
304
329
.
54.
Cai
,
C.
,
Sun
,
Q.
, and
Boyd
,
I.
,
2007
, “
Gas Flows in Microchannels and Microtubes
,”
J. Fluid Mech.
,
89
, pp.
305
314
.
55.
Agrawal
,
A.
, and
Prabhu
,
S. V.
,
2008
, “
Survey on Measurement of Tangential Momentum Accommodation Coefficient
,”
J. Vac. Sci. Technol. A
,
26
(
4
), pp.
634
645
.10.1116/1.2943641
56.
Roy
,
S.
,
Cooper
,
S. M.
,
Meyyappan
,
M.
, and
Cruden
,
B. A.
,
2005
, “
Single Component Gas Transport Through 10 nm Pores: Experimental Data and Hydrodynamic Prediction
,”
J. Membr. Sci.
,
253
, pp.
209
215
.10.1016/j.memsci.2004.11.033
57.
Cao
,
B.-Y.
,
Chen
,
M.
, and
Guo
,
Z.-Y.
,
2005
, “
Temperature Dependence of the Tangential Momentum Accommodation Coefficient for Gases
,”
Appl. Phys. Lett.
,
86
, pp.
091905-3
.10.1063/1.1871363
58.
Arkilic
,
E.
,
Breuer
,
K.
, and
Schmidt
,
M.
,
2001
, “
Mass Flow and Tangential Momentum Accommodation in Silicon Micromachined Channels
,”
J. Fluid Mech.
,
437
(
5
), pp.
29
43
.10.1017/S0022112001004128
You do not currently have access to this content.