Passive pumping using gravity-driven flow is a fascinating approach for microfluidic systems. When designing a passive pumping system, generated flow rates should be known precisely. While reported models used to estimate the flow rates do not usually consider capillary forces, this paper shows that their exclusion is unrealistic in typical gravity-driven systems. Therefore, we propose a new analytical model to estimate the generated flow rates. An extensive set of measurements is used to verify that the proposed model provides a remarkably more precise approximation of the real flow rates compared to the previous models. It is suggested that the developed model should be used when designing a gravity-driven pumping system.

References

1.
Young
,
E. W. K.
, and
Beebe
,
D. J.
,
2010
, “
Fundamentals of Microfluidic Cell Culture in Controlled Microenvironments
,”
Chem. Soc. Rev.
,
39
(
3
), pp.
1036
1048
.10.1039/b909900j
2.
Berthier
,
E.
, and
Beebe
,
D. J.
,
2007
, “
Flow Rate Analysis of a Surface Tension Driven Passive Micropump
,”
Lab Chip
,
7
(
11
), pp.
1475
1478
.10.1039/b707637a
3.
Resto
,
P. J.
,
Mogen
,
B. J.
,
Berthier
,
E.
, and
Williams
,
J. C.
,
2010
, “
An Automated Microdroplet Passive Pumping Platform for High-Speed and Packeted Microfluidic Flow Applications
,”
Lab Chip
,
10
(
1
), pp.
23
26
.10.1039/b917147a
4.
Dimov
,
I. K.
,
Kijanka
,
G.
,
Park
,
Y.
,
Ducrée
,
J.
,
Kang
,
T.
, and
Lee
,
L. P.
,
2011
, “
Integrated Microfluidic Array Plate (iMAP) for Cellular and Molecular Analysis
,”
Lab Chip
,
11
(
16
), pp.
2701
2710
.10.1039/c1lc20105k
5.
Kim
,
T.
, and
Cho
,
Y.-H.
,
2011
, “
A Pumpless Cell Culture Chip With the Constant Medium Perfusion-Rate Maintained by Balanced Droplet Dispensing
,”
Lab Chip
,
11
(
10
), pp.
1825
1830
.10.1039/c1lc20234k
6.
Kim
,
T.
,
Doh
,
I.
, and
Cho
,
Y.-H.
,
2012
, “
On-Chip Three-Dimensional Tumor Spheroid Formation and Pump-Less Perfusion Culture Using Gravity-Driven Cell Aggregation and Balanced Droplet Dispensing
,”
Biomicrofluidics
,
6
(
3
), p.
034107
.10.1063/1.4739460
7.
Sung
,
J. H.
,
Kam
,
C.
, and
Shuler
,
M. L.
,
2010
, “
A Microfluidic Device for a Pharmacokinetic–Pharmacodynamic (PK–PD) Model on a Chip
,”
Lab Chip
,
10
(
4
), pp.
446
455
.10.1039/b917763a
8.
Zhu
,
X.
,
Chu
,
L. Y.
,
Chueh
,
B.-H.
,
Shen
,
M.
,
Hazarika
,
B.
,
Phadke
,
N.
, and
Takayama
,
S.
,
2004
, “
Arrays of Horizontally Oriented Mini-Reservoirs Generate Steady Microfluidic Flows for Continuous Perfusion Cell Culture and Gradient Generation
,”
Analyst
,
129
(
11
), pp.
1026
1031
.10.1039/b407623k
9.
Gao
,
Y.
,
Sun
,
J.
,
Lin
,
W.-H.
,
Webb
,
D. J.
, and
Li
,
D.
,
2012
, “
A Compact Microfluidic Gradient Generator Using Passive Pumping
,”
Microfluid. Nanofluid.
,
12
(
6
), pp.
887
895
.10.1007/s10404-011-0908-0
10.
Chen
,
S.-Y. C.
,
Hung
,
P. J.
, and
Lee
,
P. J.
,
2011
, “
Microfluidic Array for Three-Dimensional Perfusion Culture of Human Mammary Epithelial Cells
,”
Biomed. Microdevices
,
13
(
4
), pp.
753
758
.10.1007/s10544-011-9545-3
11.
Sun
,
K.
,
Wang
,
Z.
, and
Jiang
,
X.
,
2008
, “
Modular Microfluidics for Gradient Generation
,”
Lab Chip
,
8
(
9
), pp.
1536
1543
.10.1039/b806140h
12.
Lam
,
E. W.
,
Cooksey
,
G. A.
,
Finlayson
,
B. A.
, and
Folch
,
A.
,
2006
, “
Microfluidic Circuits With Tunable Flow Resistances
,”
Appl. Phys. Lett.
,
89
(
16
), p.
164105
.10.1063/1.2363931
13.
Song
,
H.
,
Wang
,
Y.
, and
Pant
,
K.
,
2011
, “
System-Level Simulation of Liquid Filling in Microfluidic Chips
,”
Biomicrofluidics
,
5
(
2
), p.
024107
.10.1063/1.3589843
14.
Oh
,
K. W.
,
Lee
,
K.
,
Ahn
,
B.
, and
Furlani
,
E. P.
,
2012
, “
Design of Pressure-Driven Microfluidic Networks Using Electric Circuit Analogy
,”
Lab Chip
,
12
(
3
), pp.
515
545
.10.1039/c2lc20799k
15.
Berthier
,
J.
, and
Silberzan
,
P.
,
2010
,
Microfluidics for Biotechnology
,
Artech House
,
Norwood, MA
.
16.
Solovitz
,
S. A.
, and
Mainka
,
J.
,
2011
, “
Manifold Design for Micro-Channel Cooling With Uniform Flow Distribution
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051103
.10.1115/1.4004089
17.
Galvis
,
E.
,
Yarusevych
,
S.
, and
Culham
,
J. R.
,
2012
, “
Incompressible Laminar Developing Flow in Microchannels
,”
ASME J. Fluids Eng.
,
134
(
1
), p.
014503
.10.1115/1.4005736
18.
Bruus
,
H.
,
2008
,
Theoretical Microfluidics
,
Oxford University Press Inc.
,
New York
.
19.
Fuerstman
,
M. J.
,
Lai
,
A.
,
Thurlow
,
M. E.
,
Shevkoplyas
,
S. S.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
,
2007
, “
The Pressure Drop Along Rectangular Microchannels Containing Bubbles
,”
Lab Chip
,
7
(
11
), pp.
1479
1489
.10.1039/b706549c
20.
Kang
,
S.-W.
, and
Banerjee
,
D.
,
2011
, “
Modeling and Simulation of Capillary Microfluidic Networks Based on Electrical Analogies
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
054502
.10.1115/1.4004092
21.
Duffy
,
D. C.
,
McDonald
,
J. C.
,
Schueller
,
O. J. A.
, and
Whitesides
,
G. M.
,
1998
, “
Rapid Prototyping of Microfluidic Systems in Poly(Dimethylsiloxane)
,”
Anal. Chem.
,
70
(
23
), pp.
4974
4984
.10.1021/ac980656z
22.
Xiong
,
R
.,
2011
, “
Fluid Flow in Trapezoidal Silicon Microchannels With 3D Random Rough Bottoms
,”
ASME J. Fluids Eng.
,
133
(
3
), p.
031102
.10.1115/1.4003423
23.
Akbari
,
M.
,
Sinton
,
D.
, and
Bahrami
,
M.
,
2009
, “
Pressure Drop in Rectangular Microchannels as Compared With Theory Based on Arbitrary Cross Section
,”
ASME J. Fluids Eng.
,
131
(
4
), p.
041202
.10.1115/1.3077143
24.
Lynn
,
N. S.
, and
Dandy
,
D. S.
,
2009
, “
Passive Microfluidic Pumping Using Coupled Capillary/Evaporation Effects
,”
Lab Chip
,
9
(
23
), pp.
3422
3429
.10.1039/b912213c
25.
Waghmare
,
P. R.
, and
Mitra
,
S. K.
,
2010
, “
Finite Reservoir Effect on Capillary Flow of Microbead Suspension in Rectangular Microchannels
,”
J. Colloid Interface Sci.
,
351
(
2
), pp.
561
569
.10.1016/j.jcis.2010.08.039
26.
Waghmare
,
P. R.
, and
Mitra
,
S. K.
,
2012
, “
A Comprehensive Theoretical Model of Capillary Transport in Rectangular Microchannels
,”
Microfluid. Nanofluid.
,
12
(
1–4
), pp.
53
63
.10.1007/s10404-011-0848-8
27.
Chen
,
C.-C.
,
2010
, “
Modeling and Analysis of Bump Effect on Capillary Flow Through Microchannels
,”
Int. Commun. Heat Mass Transfer
,
37
(
9
), pp.
1321
1325
.10.1016/j.icheatmasstransfer.2010.07.002
28.
Gervais
,
L.
,
Hitzbleck
,
M.
, and
Delamarche
,
E.
,
2011
, “
Capillary-Driven Multiparametric Microfluidic Chips for One-Step Immunoassays
,”
Biosens. Bioelectron.
,
27
(
1
), pp.
64
70
.10.1016/j.bios.2011.06.016
You do not currently have access to this content.